1,131 research outputs found

    Structured sparsity-inducing norms through submodular functions

    Get PDF
    Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turned into a convex optimization problem by replacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the L1-norm. In this paper, we investigate more general set-functions than the cardinality, that may incorporate prior knowledge or structural constraints which are common in many applications: namely, we show that for nondecreasing submodular set-functions, the corresponding convex envelope can be obtained from its \lova extension, a common tool in submodular analysis. This defines a family of polyhedral norms, for which we provide generic algorithmic tools (subgradients and proximal operators) and theoretical results (conditions for support recovery or high-dimensional inference). By selecting specific submodular functions, we can give a new interpretation to known norms, such as those based on rank-statistics or grouped norms with potentially overlapping groups; we also define new norms, in particular ones that can be used as non-factorial priors for supervised learning

    Quasi-concave density estimation

    Full text link
    Maximum likelihood estimation of a log-concave probability density is formulated as a convex optimization problem and shown to have an equivalent dual formulation as a constrained maximum Shannon entropy problem. Closely related maximum Renyi entropy estimators that impose weaker concavity restrictions on the fitted density are also considered, notably a minimum Hellinger discrepancy estimator that constrains the reciprocal of the square-root of the density to be concave. A limiting form of these estimators constrains solutions to the class of quasi-concave densities.Comment: Published in at http://dx.doi.org/10.1214/10-AOS814 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Data Filtering for Cluster Analysis by â„“0\ell_0-Norm Regularization

    Full text link
    A data filtering method for cluster analysis is proposed, based on minimizing a least squares function with a weighted â„“0\ell_0-norm penalty. To overcome the discontinuity of the objective function, smooth non-convex functions are employed to approximate the â„“0\ell_0-norm. The convergence of the global minimum points of the approximating problems towards global minimum points of the original problem is stated. The proposed method also exploits a suitable technique to choose the penalty parameter. Numerical results on synthetic and real data sets are finally provided, showing how some existing clustering methods can take advantages from the proposed filtering strategy.Comment: Optimization Letters (2017
    • …
    corecore