706 research outputs found

    Serially Concatenated Luby Transform Coding and Bit-Interleaved Coded Modulation Using Iterative Decoding for the Wireless Internet

    No full text
    In Bit-Interleaved Coded Modulation (BICM) the coding and modulation schemes were jointly optimized for the sake of attaining the best possible performance when communicating over fading wireless communication channels. The iterative decoding scheme of BICM (BICM-ID) invoking an appropriate bit-to-symbol mapping strategy enhances its achievable performance in both AWGN and Rayleigh channels. BICM-ID may be conveniently combined with Luby Transform (LT) codes, which were designed for handling packetized wireless Internet data traffic in erasure channels without retransmitting the corrupted packets. By jointly designing a serially concatenated LT-BICM-ID code, an infinitesimally low Bit Error Rate (BER) is achieved for Signal to Noise Ratios (SNR) in excess of 7.5dB over wireless Internet type erasure channels contaminated by AWGN

    Concatenated Turbo/LDPC codes for deep space communications: performance and implementation

    Get PDF
    Deep space communications require error correction codes able to reach extremely low bit-error-rates, possibly with a steep waterfall region and without error floor. Several schemes have been proposed in the literature to achieve these goals. Most of them rely on the concatenation of different codes that leads to high hardware implementation complexity and poor resource sharing. This work proposes a scheme based on the concatenation of non-custom LDPC and turbo codes that achieves excellent error correction performance. Moreover, since both LDPC and turbo codes can be decoded with the BCJR algorithm, our preliminary results show that an efficient hardware architecture with high resource reuse can be designe

    Myths and Realities of Rateless Coding

    No full text
    Fixed-rate and rateless channel codes are generally treated separately in the related research literature and so, a novice in the field inevitably gets the impression that these channel codes are unrelated. By contrast, in this treatise, we endeavor to further develop a link between the traditional fixed-rate codes and the recently developed rateless codes by delving into their underlying attributes. This joint treatment is beneficial for two principal reasons. First, it facilitates the task of researchers and practitioners, who might be familiar with fixed-rate codes and would like to jump-start their understanding of the recently developed concepts in the rateless reality. Second, it provides grounds for extending the use of the well-understood code design tools — originally contrived for fixed-rate codes — to the realm of rateless codes. Indeed, these versatile tools proved to be vital in the design of diverse fixed-rate-coded communications systems, and thus our hope is that they will further elucidate the associated performance ramifications of the rateless coded schemes
    corecore