1,440 research outputs found

    A quantum Bose-Hubbard model with evolving graph as toy model for emergent spacetime

    Full text link
    We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties, instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model.Comment: 23 pages, 6 figures; updated to published versio

    Quantum materials for energy-efficient neuromorphic computing

    Full text link
    Neuromorphic computing approaches become increasingly important as we address future needs for efficiently processing massive amounts of data. The unique attributes of quantum materials can help address these needs by enabling new energy-efficient device concepts that implement neuromorphic ideas at the hardware level. In particular, strong correlations give rise to highly non-linear responses, such as conductive phase transitions that can be harnessed for short and long-term plasticity. Similarly, magnetization dynamics are strongly non-linear and can be utilized for data classification. This paper discusses select examples of these approaches, and provides a perspective for the current opportunities and challenges for assembling quantum-material-based devices for neuromorphic functionalities into larger emergent complex network systems

    Threshold Switching and Self-Oscillation in Niobium Oxide

    Get PDF
    Volatile threshold switching, or current controlled negative differential resistance (CC-NDR), has been observed in a range of transition metal oxides. Threshold switching devices exhibit a large non-linear change in electrical conductivity, switching from an insulating to a metallic state under external stimuli. Compact, scalable and low power threshold switching devices are of significant interest for use in existing and emerging technologies, including as a selector element in high-density memory arrays and as solid-state oscillators for hardware-based neuromorphic computing. This thesis explores the threshold switching in amorphous NbOx and the properties of individual and coupled oscillators based on this response. The study begins with an investigation of threshold switching in Pt/NbOx/TiN devices as a function device area, NbOx film thickness and temperature, which provides important insight into the structure of the self-assembled switching region. The devices exhibit combined threshold-memory behaviour after an initial voltage-controlled forming process, but exhibit symmetric threshold switching when the RESET and SET currents are kept below a critical value. In this mode, the threshold and hold voltages are shown to be independent of the device area and film thickness, and the threshold power, while independent of device area, is shown to decrease with increasing film thickness. These results are shown to be consistent with a structure in which the threshold switching volume is confined, both laterally and vertically, to the region between the residual memory filament and the electrode, and where the memory filament has a core-shell structure comprising a metallic core and a semiconducting shell. The veracity of this structure is demonstrated by comparing experimental results with the predictions of a resistor network model, and detailed finite element simulations. The next study focuses on electrical self-oscillation of an NbOx threshold switching device incorporated into a Pearson-Anson circuit configuration. Measurements confirm stable operation of the oscillator at source voltages as low as 1.06 V, and demonstrate frequency control in the range from 2.5 to 20.5 MHz with maximum frequency tuning range of 18 MHz/V. The oscillator exhibit three distinct oscillation regimes: sporadic spiking, stable oscillation and damped oscillation. The oscillation frequency, peak-to-peak amplitude and frequency are shown to be temperature and voltage dependent with stable oscillation achieved for temperatures up to ∼380 K. A physics-based threshold switching model with inclusion of device and circuit parameters is shown to explain the oscillation waveform and characteristic. The final study explores the oscillation dynamics of capacitively coupled Nb/Nb2O5 relaxation oscillators. The coupled system exhibits rich collective behaviour, from weak coupling to synchronisation, depending on the negative differential resistance response of the individual devices, the operating voltage and the coupling capacitance. These coupled oscillators are shown to exhibit stable frequency and phase locking states at source voltages as low as 2.2 V with MHz frequency tunable range. The numerical simulation of the coupled system highlights the role of source voltage, and circuit and device capacitance in controlling the coupling modes and dynamics

    Operating Coupled VO-Based Oscillators for Solving Ising Models

    Get PDF
    Coupled nano-oscillators are attracting increasing interest because of their potential to perform computation efficiently, enabling new applications in computing and information processing. The potential of phase transition devices for such dynamical systems has recently been recognized. This paper investigates the implementation of coupled VO2-based oscillator networks to solve combinatorial optimization problems. The target problem is mapped to an Ising model, which is solved by the synchronization dynamics of the system. Different factors that impact the probability of the system reaching the ground state of the Ising Hamiltonian and, therefore, the optimum solution to the corresponding optimization problem, are analyzed. The simulation-based analysis has led to the proposal of a novel Second-Harmonic Injection Locking (SHIL) schedule. Its main feature is that SHIL signal amplitude is repeatedly smoothly increased and decreased. Reducing SHIL strength is the mechanism that enables escaping from local minimum energy states. Our experiments show better results in terms of success probability than previously reported approaches. An experimental Oscillatory Ising Machine (OIM) has been built to validate our proposal.</p

    A Model of an Oscillatory Neural Network with Multilevel Neurons for Pattern Recognition and Computing

    Full text link
    The current study uses a novel method of multilevel neurons and high order synchronization effects described by a family of special metrics, for pattern recognition in an oscillatory neural network (ONN). The output oscillator (neuron) of the network has multilevel variations in its synchronization value with the reference oscillator, and allows classification of an input pattern into a set of classes. The ONN model is implemented on thermally-coupled vanadium dioxide oscillators. The ONN is trained by the simulated annealing algorithm for selection of the network parameters. The results demonstrate that ONN is capable of classifying 512 visual patterns (as a cell array 3 * 3, distributed by symmetry into 102 classes) into a set of classes with a maximum number of elements up to fourteen. The classification capability of the network depends on the interior noise level and synchronization effectiveness parameter. The model allows for designing multilevel output cascades of neural networks with high net data throughput. The presented method can be applied in ONNs with various coupling mechanisms and oscillator topology.Comment: 26 pages, 24 figure
    • …
    corecore