19,232 research outputs found

    Exact synthesis of single-qubit unitaries over Clifford-cyclotomic gate sets

    Get PDF
    We generalize an efficient exact synthesis algorithm for single-qubit unitaries over the Clifford+T gate set which was presented by Kliuchnikov, Maslov and Mosca. Their algorithm takes as input an exactly synthesizable single-qubit unitary--one which can be expressed without error as a product of Clifford and T gates--and outputs a sequence of gates which implements it. The algorithm is optimal in the sense that the length of the sequence, measured by the number of T gates, is smallest possible. In this paper, for each positive even integer nn we consider the "Clifford-cyclotomic" gate set consisting of the Clifford group plus a z-rotation by πn\frac{\pi}{n}. We present an efficient exact synthesis algorithm which outputs a decomposition using the minimum number of πn\frac{\pi}{n} z-rotations. For the Clifford+T case n=4n=4 the group of exactly synthesizable unitaries was shown to be equal to the group of unitaries with entries over the ring Z[eiπn,1/2]\mathbb{Z}[e^{i\frac{\pi}{n}},1/2]. We prove that this characterization holds for a handful of other small values of nn but the fraction of positive even integers for which it fails to hold is 100%.Comment: v2: published versio

    An Algorithmic Theory of Integer Programming

    Full text link
    We study the general integer programming problem where the number of variables nn is a variable part of the input. We consider two natural parameters of the constraint matrix AA: its numeric measure aa and its sparsity measure dd. We show that integer programming can be solved in time g(a,d)poly(n,L)g(a,d)\textrm{poly}(n,L), where gg is some computable function of the parameters aa and dd, and LL is the binary encoding length of the input. In particular, integer programming is fixed-parameter tractable parameterized by aa and dd, and is solvable in polynomial time for every fixed aa and dd. Our results also extend to nonlinear separable convex objective functions. Moreover, for linear objectives, we derive a strongly-polynomial algorithm, that is, with running time g(a,d)poly(n)g(a,d)\textrm{poly}(n), independent of the rest of the input data. We obtain these results by developing an algorithmic framework based on the idea of iterative augmentation: starting from an initial feasible solution, we show how to quickly find augmenting steps which rapidly converge to an optimum. A central notion in this framework is the Graver basis of the matrix AA, which constitutes a set of fundamental augmenting steps. The iterative augmentation idea is then enhanced via the use of other techniques such as new and improved bounds on the Graver basis, rapid solution of integer programs with bounded variables, proximity theorems and a new proximity-scaling algorithm, the notion of a reduced objective function, and others. As a consequence of our work, we advance the state of the art of solving block-structured integer programs. In particular, we develop near-linear time algorithms for nn-fold, tree-fold, and 22-stage stochastic integer programs. We also discuss some of the many applications of these classes.Comment: Revision 2: - strengthened dual treedepth lower bound - simplified proximity-scaling algorith

    Algorithms for zero-dimensional ideals using linear recurrent sequences

    Get PDF
    Inspired by Faug\`ere and Mou's sparse FGLM algorithm, we show how using linear recurrent multi-dimensional sequences can allow one to perform operations such as the primary decomposition of an ideal, by computing the annihilator of one or several such sequences.Comment: LNCS, Computer Algebra in Scientific Computing CASC 201
    • …
    corecore