2 research outputs found

    Algorithmic Semi-algebraic Geometry and Topology -- Recent Progress and Open Problems

    Full text link
    We give a survey of algorithms for computing topological invariants of semi-algebraic sets with special emphasis on the more recent developments in designing algorithms for computing the Betti numbers of semi-algebraic sets. Aside from describing these results, we discuss briefly the background as well as the importance of these problems, and also describe the main tools from algorithmic semi-algebraic geometry, as well as algebraic topology, which make these advances possible. We end with a list of open problems.Comment: Survey article, 74 pages, 15 figures. Final revision. This version will appear in the AMS Contemporary Math. Series: Proceedings of the Summer Research Conference on Discrete and Computational Geometry, Snowbird, Utah (June, 2006). J.E. Goodman, J. Pach, R. Pollack Ed

    Algorithmic and topological aspects of semi-algebraic sets defined by quadratic polynomial

    Get PDF
    In this thesis, we consider semi-algebraic sets over a real closed field RR defined by quadratic polynomials. Semi-algebraic sets of RkR^k are defined as the smallest family of sets in RkR^k that contains the algebraic sets as well as the sets defined by polynomial inequalities, and which is also closed under the boolean operations (complementation, finite unions and finite intersections). We prove new bounds on the Betti numbers as well as on the number of different stable homotopy types of certain fibers of semi-algebraic sets over a real closed field RR defined by quadratic polynomials, in terms of the parameters of the system of polynomials defining them, which improve the known results. We conclude the thesis with presenting two new algorithms along with their implementations. The first algorithm computes the number of connected components and the first Betti number of a semi-algebraic set defined by compact objects in Rk\mathbb{R}^k which are simply connected. This algorithm improves the well-know method using a triangulation of the semi-algebraic set. Moreover, the algorithm has been efficiently implemented which was not possible before. The second algorithm computes efficiently the real intersection of three quadratic surfaces in R3\mathbb{R}^3 using a semi-numerical approach.Comment: PhD thesis, final version, 109 pages, 9 figure
    corecore