21,784 research outputs found

    Computing minimal interpolation bases

    Get PDF
    International audienceWe consider the problem of computing univariate polynomial matrices over afield that represent minimal solution bases for a general interpolationproblem, some forms of which are the vector M-Pad\'e approximation problem in[Van Barel and Bultheel, Numerical Algorithms 3, 1992] and the rationalinterpolation problem in [Beckermann and Labahn, SIAM J. Matrix Anal. Appl. 22,2000]. Particular instances of this problem include the bivariate interpolationsteps of Guruswami-Sudan hard-decision and K\"otter-Vardy soft-decisiondecodings of Reed-Solomon codes, the multivariate interpolation step oflist-decoding of folded Reed-Solomon codes, and Hermite-Pad\'e approximation. In the mentioned references, the problem is solved using iterative algorithmsbased on recurrence relations. Here, we discuss a fast, divide-and-conquerversion of this recurrence, taking advantage of fast matrix computations overthe scalars and over the polynomials. This new algorithm is deterministic, andfor computing shifted minimal bases of relations between mm vectors of sizeσ\sigma it uses O (mω1(σ+s))O~( m^{\omega-1} (\sigma + |s|) ) field operations, whereω\omega is the exponent of matrix multiplication, and s|s| is the sum of theentries of the input shift ss, with min(s)=0\min(s) = 0. This complexity boundimproves in particular on earlier algorithms in the case of bivariateinterpolation for soft decoding, while matching fastest existing algorithms forsimultaneous Hermite-Pad\'e approximation

    Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts

    Get PDF
    We compute minimal bases of solutions for a general interpolation problem, which encompasses Hermite-Pad\'e approximation and constrained multivariate interpolation, and has applications in coding theory and security. This problem asks to find univariate polynomial relations between mm vectors of size σ\sigma; these relations should have small degree with respect to an input degree shift. For an arbitrary shift, we propose an algorithm for the computation of an interpolation basis in shifted Popov normal form with a cost of O ~(mω1σ)\mathcal{O}\tilde{~}(m^{\omega-1} \sigma) field operations, where ω\omega is the exponent of matrix multiplication and the notation O ~()\mathcal{O}\tilde{~}(\cdot) indicates that logarithmic terms are omitted. Earlier works, in the case of Hermite-Pad\'e approximation and in the general interpolation case, compute non-normalized bases. Since for arbitrary shifts such bases may have size Θ(m2σ)\Theta(m^2 \sigma), the cost bound O ~(mω1σ)\mathcal{O}\tilde{~}(m^{\omega-1} \sigma) was feasible only with restrictive assumptions on the shift that ensure small output sizes. The question of handling arbitrary shifts with the same complexity bound was left open. To obtain the target cost for any shift, we strengthen the properties of the output bases, and of those obtained during the course of the algorithm: all the bases are computed in shifted Popov form, whose size is always O(mσ)\mathcal{O}(m \sigma). Then, we design a divide-and-conquer scheme. We recursively reduce the initial interpolation problem to sub-problems with more convenient shifts by first computing information on the degrees of the intermediate bases.Comment: 8 pages, sig-alternate class, 4 figures (problems and algorithms

    Fast algorithm for border bases of Artinian Gorenstein algebras

    Get PDF
    Given a multi-index sequence σ\sigma, we present a new efficient algorithm to compute generators of the linear recurrence relations between the terms of σ\sigma. We transform this problem into an algebraic one, by identifying multi-index sequences, multivariate formal power series and linear functionals on the ring of multivariate polynomials. In this setting, the recurrence relations are the elements of the kerne lII\sigma of the Hankel operator $H$\sigma associated to σ\sigma. We describe the correspondence between multi-index sequences with a Hankel operator of finite rank and Artinian Gorenstein Algebras. We show how the algebraic structure of the Artinian Gorenstein algebra AA\sigmaassociatedtothesequence associated to the sequence \sigma yields the structure of the terms $\sigma\alphaforall for all α\alpha \in N n.Thisstructureisexplicitlygivenbyaborderbasisof. This structure is explicitly given by a border basis of Aσ\sigma,whichispresentedasaquotientofthepolynomialring, which is presented as a quotient of the polynomial ring K[x 1 ,. .. , xn]bythekernel] by the kernel Iσ\sigmaoftheHankeloperator of the Hankel operator Hσ\sigma.Thealgorithmprovidesgeneratorsof. The algorithm provides generators of Iσ\sigmaconstitutingaborderbasis,pairwiseorthogonalbasesof constituting a border basis, pairwise orthogonal bases of Aσ\sigma$ and the tables of multiplication by the variables in these bases. It is an extension of Berlekamp-Massey-Sakata (BMS) algorithm, with improved complexity bounds. We present applications of the method to different problems such as the decomposition of functions into weighted sums of exponential functions, sparse interpolation, fast decoding of algebraic codes, computing the vanishing ideal of points, and tensor decomposition. Some benchmarks illustrate the practical behavior of the algorithm
    corecore