7 research outputs found

    Towards Optimal Subsidy Bounds for Envy-freeable Allocations

    Full text link
    We study the fair division of indivisible items with subsidies among nn agents, where the absolute marginal valuation of each item is at most one. Under monotone valuations (where each item is a good), Brustle et al. (2020) demonstrated that a maximum subsidy of 2(n−1)2(n-1) and a total subsidy of 2(n−1)22(n-1)^2 are sufficient to guarantee the existence of an envy-freeable allocation. In this paper, we improve upon these bounds, even in a wider model. Namely, we show that, given an EF1 allocation, we can compute in polynomial time an envy-free allocation with a subsidy of at most n−1n-1 per agent and a total subsidy of at most n(n−1)/2n(n-1)/2. Moreover, we present further improved bounds for monotone valuations.Comment: 14page

    On Interim Envy-Free Allocation Lotteries

    Get PDF
    With very few exceptions, recent research in fair division has mostly focused on deterministic allocations. Deviating from this trend, we study the fairness notion of interim envy-freeness (iEF) for lotteries over allocations, which serves as a sweet spot between the too stringent notion of ex-post envy-freeness and the very weak notion of ex-ante envy-freeness. iEF is a natural generalization of envy-freeness to random allocations in the sense that a deterministic envy-free allocation is iEF (when viewed as a degenerate lottery). It is also certainly meaningful as it allows for a richer solution space, which includes solutions that are provably better than envy-freeness according to several criteria. Our analysis relates iEF to other fairness notions as well, and reveals tradeoffs between iEF and efficiency. Even though several of our results apply to general fair division problems, we are particularly interested in instances with equal numbers of agents and items where allocations are perfect matchings of the items to the agents. Envy-freeness can be trivially decided and (when it can be achieved, it) implies full efficiency in this setting. Although computing iEF allocations in matching allocation instances is considerably more challenging, we show how to compute them in polynomial time, while also maximizing several efficiency objectives. Our algorithms use the ellipsoid method for linear programming and efficient solutions to a novel variant of the bipartite matching problem as a separation oracle. We also study the extension of interim envy-freeness notion when payments to or from the agents are allowed. We present a series of results on two optimization problems, including a generalization of the classical rent division problem to random allocations using interim envy-freeness as the solution concept

    Fair division of indivisible goods: Recent progress and open questions

    Get PDF
    Allocating resources to individuals in a fair manner has been a topic of interest since ancient times, with most of the early mathematical work on the problem focusing on resources that are infinitely divisible. Over the last decade, there has been a surge of papers studying computational questions regarding the indivisible case, for which exact fairness notions such as envy-freeness and proportionality are hard to satisfy. One main theme in the recent research agenda is to investigate the extent to which their relaxations, like maximin share fairness (MMS) and envy-freeness up to any good (EFX), can be achieved. In this survey, we present a comprehensive review of the recent progress made in the related literature by highlighting different ways to relax fairness notions, common algorithm design techniques, and the most interesting questions for future research

    Efficient Fair Division with Minimal Sharing

    Full text link
    A collection of objects, some of which are good and some are bad, is to be divided fairly among agents with different tastes, modeled by additive utility-functions. If the objects cannot be shared, so that each of them must be entirely allocated to a single agent, then a fair division may not exist. What is the smallest number of objects that must be shared between two or more agents in order to attain a fair and efficient division? We focus on Pareto-optimal, envy-free and/or proportional allocations. We show that, for a generic instance of the problem -- all instances except of a zero-measure set of degenerate problems -- a fair Pareto-optimal division with the smallest possible number of shared objects can be found in polynomial time, assuming that the number of agents is fixed. The problem becomes computationally hard for degenerate instances, where agents' valuations are aligned for many objects.Comment: Add experiments with Spliddit.org dat
    corecore