2 research outputs found

    Measurement-Induced Boolean Dynamics and Controllability for Quantum Networks

    Full text link
    In this paper, we study dynamical quantum networks which evolve according to Schr\"odinger equations but subject to sequential local or global quantum measurements. A network of qubits forms a composite quantum system whose state undergoes unitary evolution in between periodic measurements, leading to hybrid quantum dynamics with random jumps at discrete time instances along a continuous orbit. The measurements either act on the entire network of qubits, or only a subset of qubits. First of all, we reveal that this type of hybrid quantum dynamics induces probabilistic Boolean recursions representing the measurement outcomes. With global measurements, it is shown that such resulting Boolean recursions define Markov chains whose state-transitions are fully determined by the network Hamiltonian and the measurement observables. Particularly, we establish an explicit and algebraic representation of the underlying recursive random mapping driving such induced Markov chains. Next, with local measurements, the resulting probabilistic Boolean dynamics is shown to be no longer Markovian. The state transition probability at any given time becomes dependent on the entire history of the sample path, for which we establish a recursive way of computing such non-Markovian probability transitions. Finally, we adopt the classical bilinear control model for the continuous Schr\"odinger evolution, and show how the measurements affect the controllability of the quantum networks.Comment: 26 pages, 7 figure

    Structural Controllability on Graphs for Drifted Bilinear Systems over Lie Groups

    Full text link
    In this paper, we study graphical conditions for structural controllability and accessibility of drifted bilinear systems over Lie groups. We consider a bilinear control system with drift and controlled terms that evolves over the special orthogonal group, the general linear group, and the special unitary group. Zero patterns are prescribed for the drift and controlled dynamics with respect to a set of base elements in the corresponding Lie algebra. The drift dynamics must respect a rigid zero-pattern in the sense that the drift takes values as a linear combination of base elements with strictly non-zero coefficients; the controlled dynamics are allowed to follow a free zero pattern with potentially zero coefficients in the configuration of the controlled term by linear combination of the controlled base elements. First of all, for such bilinear systems over the special orthogonal group or the special unitary group, the zero patterns are shown to be associated with two undirected or directed graphs whose connectivity and connected components ensure structural controllability/accessibility. Next, for bilinear systems over the special unitary group, we introduce two edge-colored graphs associated with the drift and controlled zero patterns, and prove structural controllability conditions related to connectivity and the number of edges of a particular color
    corecore