4 research outputs found

    A law of the iterated logarithm for Grenander's estimator

    Get PDF
    In this note we prove the following law of the iterated logarithm for the Grenander estimator of a monotone decreasing density: If f(t0)>0f(t_0) > 0, f(t0)<0f'(t_0) < 0, and ff' is continuous in a neighborhood of t0t_0, then \begin{eqnarray*} \limsup_{n\rightarrow \infty} \left ( \frac{n}{2\log \log n} \right )^{1/3} ( \widehat{f}_n (t_0 ) - f(t_0) ) = \left| f(t_0) f'(t_0)/2 \right|^{1/3} 2M \end{eqnarray*} almost surely where MsupgGTg=(3/4)1/3 M \equiv \sup_{g \in {\cal G}} T_g = (3/4)^{1/3} and T_g \equiv \mbox{argmax}_u \{ g(u) - u^2 \} ; here G{\cal G} is the two-sided Strassen limit set on RR. The proof relies on laws of the iterated logarithm for local empirical processes, Groeneboom's switching relation, and properties of Strassen's limit set analogous to distributional properties of Brownian motion.Comment: 11 pages, 3 figure

    Confidence bands for a log-concave density

    Full text link
    We present a new approach for inference about a log-concave distribution: Instead of using the method of maximum likelihood, we propose to incorporate the log-concavity constraint in an appropriate nonparametric confidence set for the cdf FF. This approach has the advantage that it automatically provides a measure of statistical uncertainty and it thus overcomes a marked limitation of the maximum likelihood estimate. In particular, we show how to construct confidence bands for the density that have a finite sample guaranteed confidence level. The nonparametric confidence set for FF which we introduce here has attractive computational and statistical properties: It allows to bring modern tools from optimization to bear on this problem via difference of convex programming, and it results in optimal statistical inference. We show that the width of the resulting confidence bands converges at nearly the parametric n12n^{-\frac{1}{2}} rate when the log density is kk-affine.Comment: Added more experiments, other minor change
    corecore