840 research outputs found

    Evaluating and Improving 4D-CT Image Segmentation for Lung Cancer Radiotherapy

    Get PDF
    Lung cancer is a high-incidence disease with low survival despite surgical advances and concurrent chemo-radiotherapy strategies. Image-guided radiotherapy provides for treatment measures, however, significant challenges exist for imaging, treatment planning, and delivery of radiation due to the influence of respiratory motion. 4D-CT imaging is capable of improving image quality of thoracic target volumes influenced by respiratory motion. 4D-CT-based treatment planning strategies requires highly accurate anatomical segmentation of tumour volumes for radiotherapy treatment plan optimization. Variable segmentation of tumour volumes significantly contributes to uncertainty in radiotherapy planning due to a lack of knowledge regarding the exact shape of the lesion and difficulty in quantifying variability. As image-segmentation is one of the earliest tasks in the radiotherapy process, inherent geometric uncertainties affect subsequent stages, potentially jeopardizing patient outcomes. Thus, this work assesses and suggests strategies for mitigation of segmentation-related geometric uncertainties in 4D-CT-based lung cancer radiotherapy at pre- and post-treatment planning stages

    Personalised Procedures for Thoracic Radiotherapy

    Get PDF
    This thesis presents the investigation, development, and estimation of two personalised procedures for thoracic cancer therapy in Shenzhen, China and two projects were carried out: (1) respiratory motion management of a lung tumour, and (2) the application of a three-dimensional (3D) printing technique for postmastectomy irradiation. For the first project, all subjects attended sessions of free-breathing (FB) and personalised vocal coaching (VC) for respiratory regulation. Thoracic and abdominal breathing signals were extracted from the subjects’ surface area then estimated as kernel density estimation (KDE) for motion visualisation. The mutual information (MI) and correlation coefficient (CC) calculated from KDEs indicate the variation in the relationship between the two signals. From the 1D signal, through VC, the variation of cycle time and the signal value of end-of-exhale/inhale increased in the patient group but decreased in volunteers. Mixed results were presented on KDE and MI. Compared with FB, VC improves movement consistency between the two signals in eight of eleven subjects by increasing MI. The fixed instruction method showed no improvement for day-to-day variation, while the daily generated instruction enhanced the respiratory regularity in three of five volunteers. VC addresses the variation of the single signal, while the outcome of the two signals, thoracic and abdominal signals, requires further interpretation. The second project aims to address both the enhancement of the skin dose and avoidance of hotspots of critical organs, focusing on improving irradiative treatment for post-mastectomy patients. A 3D-printed bolus was presented as a solution for the air gap between the bolus and skin. The results showed no evidence of significant skin dose enhancement with the printed bolus. Additionally, an air gap larger than 5 mm was evident in all patients. Until a solution for complete bolus adhesion is found, this customised bolus is not suitable for clinical use

    Automated Image-Based Procedures for Adaptive Radiotherapy

    Get PDF

    Treatment planning optimisation in proton therapy

    Get PDF
    The goal of radiotherapy is to achieve uniform target coverage while sparing normal tissue. In proton therapy, the same sources of geometric uncertainty are present as in conventional radiotherapy. However, an important and fundamental difference in proton therapy is that protons have a finite range, highly dependent on the electron density of the material they are traversing, resulting in a steep dose gradient at the distal edge of the Bragg peak. Therefore, an accurate knowledge of the sources and magnitudes of the uncertainties affecting the proton range is essential for producing plans which are robust to these uncertainties. This review describes the current knowledge of the geometric uncertainties and discusses their impact on proton dose plans. The need for patient-specific validation is essential and in cases of complex intensity-modulated proton therapy plans the use of a planning target volume (PTV) may fail to ensure coverage of the target. In cases where a PTV cannot be used, other methods of quantifying plan quality have been investigated. A promising option is to incorporate uncertainties directly into the optimisation algorithm. A further development is the inclusion of robustness into a multicriteria optimisation framework, allowing a multi-objective Pareto optimisation function to balance robustness and conformity. The question remains as to whether adaptive therapy can become an integral part of a proton therapy, to allow re-optimisation during the course of a patient's treatment. The challenge of ensuring that plans are robust to range uncertainties in proton therapy remains, although these methods can provide practical solutions

    Surrogate-driven respiratory motion models for MRI-guided lung radiotherapy treatments

    Get PDF
    An MR-Linac integrates an MR scanner with a radiotherapy delivery system, providing non-ionizing real-time imaging of the internal anatomy before, during and after radiotherapy treatments. Due to spatio-temporal limitations of MR imaging, only high-resolution 2D cine-MR images can be acquired in real-time during MRI-guided radiotherapy (MRIgRT) to monitor the respiratory-induced motion of lung tumours and organs-at-risk. However, temporally-resolved 3D anatomical information is essential for accurate MR guidance of beam delivery and dose estimation of the actually delivered dose. Surrogate-driven respiratory motion models can estimate the 3D motion of the internal anatomy from surrogate signals, producing the required information. The overall aim of this thesis was to tailor a generalized respiratory motion modelling framework for lung MRIgRT. This framework can fit the model directly to unsorted 2D MR images sampling the 3D motion, and to surrogate signals extracted from the 2D cine-MR images acquired on an MR-Linac. It can model breath-to-breath variability and produce a motion compensated super-resolution reconstruction (MCSR) 3D image that can be deformed using the estimated motion. In this work novel MRI-derived surrogate signals were generated from 2D cine-MR images to model respiratory motion for lung cancer patients, by applying principal component analysis to the control point displacements obtained from the registration of the cine-MR images. An MR multi-slice interleaved acquisition potentially suitable for the MR-Linac was developed to generate MRI-derived surrogate signals and build accurate respiratory motion models with the generalized framework for lung cancer patients. The developed models and the MCSR images were thoroughly evaluated for lung cancer patients scanned on an MR-Linac. The results showed that respiratory motion models built with the generalized framework and minimal training data generally produced median errors within the MCSR voxel size of 2 mm, throughout the whole 3D thoracic field-of-view and over the expected lung MRIgRT treatment times

    Optimizing Respiratory Gated Intensity Modulated Radiation Therapy Planning and Delivery of Early-Stage Non-Small Cell Lung Cancer

    Get PDF
    Stereotactic ablative body radiotherapy (SABR) is the standard of care for inoperable early-stage non-small cell lung cancer (NSCLC) patients. However, thoracic tumours are susceptible to respiratory motion and, if unaccounted for, can potentially lead to dosimetric uncertainties. Respiratory gating is one method that limits treatment delivery to portions of the respiratory cycle, but when combined with intensity-modulated radiotherapy (IMRT), requires rigorous verification. The goal of this thesis is to optimize respiratory gated IMRT treatment planning and develop image-guided strategies to verify the dose delivery for future early-stage NSCLC patients. Retrospective treatment plans were generated for various IMRT delivery techniques, including fixed-beam, volumetric modulated arc therapy (VMAT), and helical tomotherapy. VMAT was determined the best technique for optimizing dose conformity and efficiency. A second treatment planning study that considered patients exhibiting significant tumour motion was conducted. Respiratory ungated and gated VMAT plans were compared. Significant decreases in V20Gy and V50%, predictors for radiation pneumonitis and irreversible fibrosis, respectively, were observed. The predominant uncertainty of respiratory gating lies in the ability of an external surrogate marker to accurately predict internal target motion. Intrafraction triggered kV imaging was validated in a programmable motion phantom study as a method to determine how correlated the internal and external motion are during ungated and gated VMAT deliveries and to identify potential phase shifts between the motions. KV projections acquired during gated VMAT delivery were used to reconstruct gated cone-beam CT (CBCT), providing 3D tumour position verification. Image quality and target detectability, in the presence of MV scatter from the treatment beam to the kV detector, was evaluated with various imaging parameters and under real-patient breathing motion conditions. No significant difference in image quality was observed for the CBCT acquisitions with or without the presence of MV scatter. This thesis explores the benefits of combining respiratory gating with IMRT/VMAT for the treatment of early stage NSCLC with SABR, and evaluates advanced on-board imaging capabilities to develop dose delivery verification protocols. The results of this thesis will provide the tools necessary to confidently implement a respiratory gated radiotherapy program aimed at improving the therapeutic ratio for early-stage NSCLC
    • …
    corecore