19,287 research outputs found

    Bootstrap Multigrid for the Laplace-Beltrami Eigenvalue Problem

    Full text link
    This paper introduces bootstrap two-grid and multigrid finite element approximations to the Laplace-Beltrami (surface Laplacian) eigen-problem on a closed surface. The proposed multigrid method is suitable for recovering eigenvalues having large multiplicity, computing interior eigenvalues, and approximating the shifted indefinite eigen-problem. Convergence analysis is carried out for a simplified two-grid algorithm and numerical experiments are presented to illustrate the basic components and ideas behind the overall bootstrap multigrid approach

    A Random Matrix Model of Adiabatic Quantum Computing

    Get PDF
    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of Random Matrix Theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances, i.e., those having a critical ratio of clauses to variables, the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to non-adiabatic Landau-Zener type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.Comment: 9 pages, 7 figure

    Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi-Chebyshev algorithm

    Get PDF
    An efficient way of solving 2D stability problems in fluid mechanics is to use, after discretization of the equations that cast the problem in the form of a generalized eigenvalue problem, the incomplete Arnoldi-Chebyshev method. This method preserves the banded structure sparsity of matrices of the algebraic eigenvalue problem and thus decreases memory use and CPU-time consumption. The errors that affect computed eigenvalues and eigenvectors are due to the truncation in the discretization and to finite precision in the computation of the discretized problem. In this paper we analyze those two errors and the interplay between them. We use as a test case the two-dimensional eigenvalue problem yielded by the computation of inertial modes in a spherical shell. This problem contains many difficulties that make it a very good test case. It turns out that that single modes (especially most-damped modes i.e. with high spatial frequency) can be very sensitive to round-off errors, even when apparently good spectral convergence is achieved. The influence of round-off errors is analyzed using the spectral portrait technique and by comparison of double precision and extended precision computations. Through the analysis we give practical recipes to control the truncation and round-off errors on eigenvalues and eigenvectors.Comment: 15 pages, 9 figure

    Solving eigenvalue problems on curved surfaces using the Closest Point Method

    Full text link
    Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace--Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach
    • …
    corecore