5 research outputs found

    Computing Solution Operators of Boundary-value Problems for Some Linear Hyperbolic Systems of PDEs

    Full text link
    We discuss possibilities of application of Numerical Analysis methods to proving computability, in the sense of the TTE approach, of solution operators of boundary-value problems for systems of PDEs. We prove computability of the solution operator for a symmetric hyperbolic system with computable real coefficients and dissipative boundary conditions, and of the Cauchy problem for the same system (we also prove computable dependence on the coefficients) in a cube QβŠ†RmQ\subseteq\mathbb R^m. Such systems describe a wide variety of physical processes (e.g. elasticity, acoustics, Maxwell equations). Moreover, many boundary-value problems for the wave equation also can be reduced to this case, thus we partially answer a question raised in Weihrauch and Zhong (2002). Compared with most of other existing methods of proving computability for PDEs, this method does not require existence of explicit solution formulas and is thus applicable to a broader class of (systems of) equations.Comment: 31 page

    Bit complexity of computing solutions for symmetric hyperbolic systems of PDEs (Extended abstract)

    Get PDF
    Β© 2018, Springer International Publishing AG, part of Springer Nature. We establish upper bounds of bit complexity of computing solution operators for symmetric hyperbolic systems of PDEs. Here we continue the research started in our papers of 2009 and 2017, where computability, in the rigorous sense of computable analysis, has been established for solution operators of Cauchy and dissipative boundary-value problems for such systems

    Computing Solution Operators of Boundary-value Problems for Some Linear Hyperbolic Systems of PDEs

    No full text
    We discuss possibilities of application of Numerical Analysis methods to proving computability, in the sense of the TTE approach, of solution operators of boundary-value problems for systems of PDEs. We prove computability of the solution operator for a symmetric hyperbolic system with computable real coefficients and dissipative boundary conditions, and of the Cauchy problem for the same system (we also prove computable dependence on the coefficients) in a cube QβŠ†RmQ\subseteq\mathbb R^m. Such systems describe a wide variety of physical processes (e.g. elasticity, acoustics, Maxwell equations). Moreover, many boundary-value problems for the wave equation also can be reduced to this case, thus we partially answer a question raised in Weihrauch and Zhong (2002). Compared with most of other existing methods of proving computability for PDEs, this method does not require existence of explicit solution formulas and is thus applicable to a broader class of (systems of) equations
    corecore