3 research outputs found

    Computing Reduced Order Models via Inner-Outer Krylov Recycling in Diffuse Optical Tomography

    Full text link
    In nonlinear imaging problems whose forward model is described by a partial differential equation (PDE), the main computational bottleneck in solving the inverse problem is the need to solve many large-scale discretized PDEs at each step of the optimization process. In the context of absorption imaging in diffuse optical tomography, one approach to addressing this bottleneck proposed recently (de Sturler, et al, 2015) reformulates the viewing of the forward problem as a differential algebraic system, and then employs model order reduction (MOR). However, the construction of the reduced model requires the solution of several full order problems (i.e. the full discretized PDE for multiple right-hand sides) to generate a candidate global basis. This step is then followed by a rank-revealing factorization of the matrix containing the candidate basis in order to compress the basis to a size suitable for constructing the reduced transfer function. The present paper addresses the costs associated with the global basis approximation in two ways. First, we use the structure of the matrix to rewrite the full order transfer function, and corresponding derivatives, such that the full order systems to be solved are symmetric (positive definite in the zero frequency case). Then we apply MOR to the new formulation of the problem. Second, we give an approach to computing the global basis approximation dynamically as the full order systems are solved. In this phase, only the incrementally new, relevant information is added to the existing global basis, and redundant information is not computed. This new approach is achieved by an inner-outer Krylov recycling approach which has potential use in other applications as well. We show the value of the new approach to approximate global basis computation on two DOT absorption image reconstruction problems

    A Multiscale Method for Model Order Reduction in PDE Parameter Estimation

    Full text link
    Estimating parameters of Partial Differential Equations (PDEs) is of interest in a number of applications such as geophysical and medical imaging. Parameter estimation is commonly phrased as a PDE-constrained optimization problem that can be solved iteratively using gradient-based optimization. A computational bottleneck in such approaches is that the underlying PDEs needs to be solved numerous times before the model is reconstructed with sufficient accuracy. One way to reduce this computational burden is by using Model Order Reduction (MOR) techniques such as the Multiscale Finite Volume Method (MSFV). In this paper, we apply MSFV for solving high-dimensional parameter estimation problems. Given a finite volume discretization of the PDE on a fine mesh, the MSFV method reduces the problem size by computing a parameter-dependent projection onto a nested coarse mesh. A novelty in our work is the integration of MSFV into a PDE-constrained optimization framework, which updates the reduced space in each iteration. We also present a computationally tractable way of differentiating the MOR solution that acknowledges the change of basis. As we demonstrate in our numerical experiments, our method leads to computational savings particularly for large-scale parameter estimation problems and can benefit from parallelization.Comment: 22 pages, 4 figures, 3 table

    Randomization for the Efficient Computation of Parametric Reduced Order Models for Inversion

    Full text link
    Nonlinear parametric inverse problems appear in many applications. Here, we focus on diffuse optical tomography (DOT) in medical imaging to recover unknown images of interest, such as cancerous tissue in a given medium, using a mathematical (forward) model. The forward model in DOT is a diffusion-absorption model for the photon flux. The main bottleneck in these problems is the repeated evaluation of the large-scale forward model. For DOT, this corresponds to solving large linear systems for each source and frequency at each optimization step. Moreover, Newton-type methods, often the method of choice, require additional linear solves with the adjoint to compute derivative information. Emerging technology allows for large numbers of sources and detectors, making these problems prohibitively expensive. Reduced order models (ROM) have been used to drastically reduce the system size in each optimization step, while solving the inverse problem accurately. However, for large numbers of sources and detectors, just the construction of the candidate basis for the ROM projection space incurs a substantial cost, as matching the full parameter gradient matrix in interpolatory model reduction requires large linear solves for all sources and frequencies and all detectors and frequencies for each parameter interpolation point. As this candidate basis numerically has low rank, this construction is followed by a rank-revealing factorization that typically reduces the number of vectors in the candidate basis substantially. We propose to use randomization to approximate this basis with a drastically reduced number of large linear solves. We also provide a detailed analysis for the low-rank structure of the candidate basis for our problem of interest. Even though we focus on the DOT problem, the ideas presented are relevant to many other large scale inverse problems and optimization problems.Comment: 18 pages, 5 figure
    corecore