1,458 research outputs found

    On the Parameterized Complexity of Bend-Minimum Orthogonal Planarity

    Full text link
    Computing planar orthogonal drawings with the minimum number of bends is one of the most relevant topics in Graph Drawing. The problem is known to be NP-hard, even when we want to test the existence of a rectilinear planar drawing, i.e., an orthogonal drawing without bends (Garg and Tamassia, 2001). From the parameterized complexity perspective, the problem is fixed-parameter tractable when parameterized by the sum of three parameters: the number of bends, the number of vertices of degree at most two, and the treewidth of the input graph (Di Giacomo et al., 2022). We improve this last result by showing that the problem remains fixed-parameter tractable when parameterized only by the number of vertices of degree at most two plus the number of bends. As a consequence, rectilinear planarity testing lies in \FPT~parameterized by the number of vertices of degree at most two.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Orthogonal Graph Drawing with Inflexible Edges

    Full text link
    We consider the problem of creating plane orthogonal drawings of 4-planar graphs (planar graphs with maximum degree 4) with constraints on the number of bends per edge. More precisely, we have a flexibility function assigning to each edge ee a natural number flex(e)\mathrm{flex}(e), its flexibility. The problem FlexDraw asks whether there exists an orthogonal drawing such that each edge ee has at most flex(e)\mathrm{flex}(e) bends. It is known that FlexDraw is NP-hard if flex(e)=0\mathrm{flex}(e) = 0 for every edge ee. On the other hand, FlexDraw can be solved efficiently if flex(e)≥1\mathrm{flex}(e) \ge 1 and is trivial if flex(e)≥2\mathrm{flex}(e) \ge 2 for every edge ee. To close the gap between the NP-hardness for flex(e)=0\mathrm{flex}(e) = 0 and the efficient algorithm for flex(e)≥1\mathrm{flex}(e) \ge 1, we investigate the computational complexity of FlexDraw in case only few edges are inflexible (i.e., have flexibility~00). We show that for any ε>0\varepsilon > 0 FlexDraw is NP-complete for instances with O(nε)O(n^\varepsilon) inflexible edges with pairwise distance Ω(n1−ε)\Omega(n^{1-\varepsilon}) (including the case where they induce a matching). On the other hand, we give an FPT-algorithm with running time O(2k⋅n⋅Tflow(n))O(2^k\cdot n \cdot T_{\mathrm{flow}}(n)), where Tflow(n)T_{\mathrm{flow}}(n) is the time necessary to compute a maximum flow in a planar flow network with multiple sources and sinks, and kk is the number of inflexible edges having at least one endpoint of degree 4.Comment: 23 pages, 5 figure

    Transforming planar graph drawings while maintaining height

    Full text link
    There are numerous styles of planar graph drawings, notably straight-line drawings, poly-line drawings, orthogonal graph drawings and visibility representations. In this note, we show that many of these drawings can be transformed from one style to another without changing the height of the drawing. We then give some applications of these transformations

    Planar Octilinear Drawings with One Bend Per Edge

    Get PDF
    In octilinear drawings of planar graphs, every edge is drawn as an alternating sequence of horizontal, vertical and diagonal (45∘45^\circ) line-segments. In this paper, we study octilinear drawings of low edge complexity, i.e., with few bends per edge. A kk-planar graph is a planar graph in which each vertex has degree less or equal to kk. In particular, we prove that every 4-planar graph admits a planar octilinear drawing with at most one bend per edge on an integer grid of size O(n2)×O(n)O(n^2) \times O(n). For 5-planar graphs, we prove that one bend per edge still suffices in order to construct planar octilinear drawings, but in super-polynomial area. However, for 6-planar graphs we give a class of graphs whose planar octilinear drawings require at least two bends per edge
    • …
    corecore