1,059 research outputs found

    Complexity of Computing the Local Dimension of a Semialgebraic Set

    Get PDF
    AbstractThe paper describes several algorithms related to a problem of computing the local dimension of a semialgebraic set. Let a semialgebraic set V be defined by a system of k inequalities of the formf≥ 0 with f∈R [ X1,⋯ ,Xn ], deg(f) <d , andx∈V . An algorithm is constructed for computing the dimension of the Zariski tangent space to V at x in time (kd)O(n). Let x belong to a stratum of codimension lxin V with respect to a smooth stratification ofV . Another algorithm computes the local dimension dimx(V) with the complexity (k(lx+ 1)d)O(lx2n). Ifl=maxx∈Vlx, and for every connected component the local dimension is the same at each point, then the algorithm computes the dimension of every connected component with complexity (k(l+ 1)d)O(l2n). If V is a real algebraic variety defined by a system of equations, then the complexity of the algorithm is less thankdO(l2n) , and the algorithm also finds the dimension of the tangent space to V at x in time kdO(n). Whenl is fixed, like in the case of a smooth V , the complexity bounds for computing the local dimension are (kd)O(n)andkdO(n) respectively. A third algorithm finds the singular locus ofV in time (kd)O(n2)

    Computing the homology of basic semialgebraic sets in weak exponential time

    Get PDF
    We describe and analyze an algorithm for computing the homology (Betti numbers and torsion coefficients) of basic semialgebraic sets which works in weak exponential time. That is, out of a set of exponentially small measure in the space of data the cost of the algorithm is exponential in the size of the data. All algorithms previously proposed for this problem have a complexity which is doubly exponential (and this is so for almost all data)
    • …
    corecore