4 research outputs found

    Free form deformation techniques applied to 3D shape optimization problems

    Get PDF
    The purpose of this work is to analyse and study an efficient parametrization technique for a 3D shape optimization problem. After a brief review of the techniques and approaches already available in literature, we recall the Free Form Deformation parametrization, a technique which proved to be efficient and at the same time versatile, allowing to manage complex shapes even with few parameters. We tested and studied the FFD technique by establishing a path, from the geometry definition, to the method implementation, and finally to the simulation and to the optimization of the shape. In particular, we have studied a bulb and a rudder of a race sailing boat as model applications, where we have tested a complete procedure from Computer-Aided-Design to build the geometrical model to discretization and mesh generation

    MATHICSE Technical Report : Analytic regularity and collocation approximation for PDEs with random domain deformations

    Get PDF
    In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem is remapped on to a corresponding PDE with a fixed deterministic domain. We show that the solution can be analytically extended to a well defined region in CN with respect to the random variables. A sparse grid stochastic collocation method is then used to compute the mean and standard deviation of the QoI. Finally, convergence rates for the mean and variance of the QoI are derived and compared to those obtained in numerical experiments

    Computing Extremal Points Of Symplectic Pseudospectra And Solving Symplectic Matrix Nearness Problems

    No full text
    We study differential equations that lead to extremal points in symplectic pseudospectra. In a two-level approach, where on the inner level we compute extremizers of the symplectic epsilon-pseudospectrum for a given epsilon and on the outer level we optimize over epsilon, this is used to solve symplectic matrix nearness problems such as the following: For a symplectic matrix with eigenvalues of unit modulus, we aim to determine the nearest complex symplectic matrix such that some or all eigenvalues leave the complex unit circle. Conversely, for a symplectic matrix with all eigenvalues lying off the unit circle, we consider the problem of computing the nearest symplectic matrix that has an eigenvalue on the unit circle
    corecore