98,453 research outputs found
Supporting reinterpretation in computer-aided conceptual design
This paper presents research that aims to inform the development of computational tools that better support design exploration and idea transformation - key objectives in conceptual design. Analyses of experimental data from two fields - product design and architecture - suggest that the interactions of designers with their sketches can be formalised according to a finite number of generalised shape rules defined within a shape grammar. Such rules can provide a basis for the generation of alternative design concepts and they have informed the development of a prototype shape synthesis system that supports dynamic reinterpretation of shapes in design activity. The notion of 'sub-shapes' is introduced and the significance of these to perception, recognition and the development of emergent structures is discussed. The paper concludes with some speculation on how such a system might find application in a range of design fields
The design co-ordination framework : key elements for effective product development
This paper proposes a Design Co-ordination Framework (DCF) i.e. a concept for an ideal DC system with the abilities to support co-ordination of various complex aspects of product development. A set of frames, modelling key elements of co-ordination, which reflect the states of design, plans, organisation, allocations, tasks etc. during the design process, has been identified. Each frame is explained and the co-ordination, i.e. the management of the links between these frames, is presented, based upon characteristic DC situations in industry. It is concluded that while the DCF provides a basis for our research efforts into enhancing the product development process there is still considerable work and development required before it can adequately reflect and support Design Co-ordination
Recommended from our members
Shape interpretation with design computing
How information is interpreted has significant impact on how it can be used. This is particularly important in design where information from a wide variety of sources is used in a wide variety of contexts and in a wide variety of ways. This paper is concerned with the information that is created, modified and analysed during design processes, specifically with the information that is represented in shapes. It investigates how design computing seeks to support these processes, and the difficulties that arise when it is necessary to consider alternative interpretations of shape. The aim is to establish the problem of shape interpretation as a general challenge for research in design computing, rather than a difficulty that is to be overcome within specific processes. Shape interpretations are common characteristics of several areas of enquiry in design computing. This paper reviews these, brings an integrated perspective and draws conclusions about how this underlying process can be supported
GIS and urban design
Although urban planning has used computer models and information systems sincethe 1950s and architectural practice has recently restructured to the use of computeraideddesign (CAD) and computer drafting software, urban design has hardly beentouched by the digital world. This is about to change as very fine scale spatial datarelevant to such design becomes routinely available, as 2dimensional GIS(geographic information systems) become linked to 3dimensional CAD packages,and as other kinds of photorealistic media are increasingly being fused with thesesoftware. In this chapter, we present the role of GIS in urban design, outlining whatcurrent desktop software is capable of and showing how various new techniques canbe developed which make such software highly suitable as basis for urban design.We first outline the nature of urban design and then present ideas about how varioussoftware might form a tool kit to aid its process. We then look in turn at: utilisingstandard mapping capabilities within GIS relevant to urban design; buildingfunctional extensions to GIS which measure local scale accessibility; providingsketch planning capability in GIS and linking 2-d to 3-d visualisations using low costnet-enabled CAD browsers. We finally conclude with some speculations on thefuture of GIS for urban design across networks whereby a wide range of participantsmight engage in the design process digitally but remotely
Recommended from our members
Back-annotation for interactive data path synthesis
In order to take into account physical design effects, a designer needs a feedback mechanism during interactive data path synthesis. In this paper, we propose a hypergraph model and a back-annotation algorithm which provide a feedback mechanism for back-annotation from physical designs to behavioral descriptions. Given a control data flow graph and its structural design, this back-annotation technique cannot only evaluate the design quality but can also feedback the delay to each edge and node in the graph. Therefore, a designer can identify the critical paths and improve the design. The hypergraph model and the back-annotation algorithm allow us to bridge the gap between the behavioral description and the physical design
- …
