2,523 research outputs found

    Computer simulation of two continuous spin models using Wang-Landau-Transition-Matrix Monte Carlo Algorithm

    Full text link
    Monte Carlo simulation using a combination of Wang Landau (WL) and Transition Matrix (TM) Monte Carlo algorithms to simulate two lattice spin models with continuous energy is described. One of the models, the one dimensional Lebwohl-Lasher model has an exact solution and we have used this to test the performance of the mixed algorithm (WLTM). The other system we have worked on is the two dimensional XY-model. The purpose of the present work is to test the performance of the WLTM algorithm in continuous models and to suggest methods for obtaining best results in such systems using this algorithm.Comment: 29 pages, 15 figure

    A Tutorial on Advanced Dynamic Monte Carlo Methods for Systems with Discrete State Spaces

    Full text link
    Advanced algorithms are necessary to obtain faster-than-real-time dynamic simulations in a number of different physical problems that are characterized by widely disparate time scales. Recent advanced dynamic Monte Carlo algorithms that preserve the dynamics of the model are described. These include the nn-fold way algorithm, the Monte Carlo with Absorbing Markov Chains (MCAMC) algorithm, and the Projective Dynamics (PD) algorithm. To demonstrate the use of these algorithms, they are applied to some simplified models of dynamic physical systems. The models studied include a model for ion motion through a pore such as a biological ion channel and the metastable decay of the ferromagnetic Ising model. Non-trivial parallelization issues for these dynamic algorithms, which are in the class of parallel discrete event simulations, are discussed. Efforts are made to keep the article at an elementary level by concentrating on a simple model in each case that illustrates the use of the advanced dynamic Monte Carlo algorithm.Comment: 53 pages, 17 figure

    Transition matrix Monte Carlo method for quantum systems

    Full text link
    We propose an efficient method for Monte Carlo simulation of quantum lattice models. Unlike most other quantum Monte Carlo methods, a single run of the proposed method yields the free energy and the entropy with high precision for the whole range of temperature. The method is based on several recent findings in Monte Carlo techniques, such as the loop algorithm and the transition matrix Monte Carlo method. In particular, we derive an exact relation between the DOS and the expectation value of the transition probability for quantum systems, which turns out to be useful in reducing the statistical errors in various estimates.Comment: 6 pages, 4 figure

    Teaching statistical physics by thinking about models and algorithms

    Full text link
    We discuss several ways of illustrating fundamental concepts in statistical and thermal physics by considering various models and algorithms. We emphasize the importance of replacing students' incomplete mental images by models that are physically accurate. In some cases it is sufficient to discuss the results of an algorithm or the behavior of a model rather than having students write a program.Comment: 21 pages, 4 figures, submitted to the American Journal of Physic

    Computing quantum phase transitions

    Get PDF
    This article first gives a concise introduction to quantum phase transitions, emphasizing similarities with and differences to classical thermal transitions. After pointing out the computational challenges posed by quantum phase transitions, a number of successful computational approaches is discussed. The focus is on classical and quantum Monte Carlo methods, with the former being based on the quantum-to classical mapping while the latter directly attack the quantum problem. These methods are illustrated by several examples of quantum phase transitions in clean and disordered systems.Comment: 99 pages, 15 figures, submitted to Reviews in Computational Chemistr

    Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram

    Full text link
    We describe an efficient Monte Carlo algorithm using a random walk in energy space to obtain a very accurate estimate of the density of states for classical statistical models. The density of states is modified at each step when the energy level is visited to produce a flat histogram. By carefully controlling the modification factor, we allow the density of states to converge to the true value very quickly, even for large systems. This algorithm is especially useful for complex systems with a rough landscape since all possible energy levels are visited with the same probability. In this paper, we apply our algorithm to both 1st and 2nd order phase transitions to demonstrate its efficiency and accuracy. We obtained direct simulational estimates for the density of states for two-dimensional ten-state Potts models on lattices up to 200×200200 \times 200 and Ising models on lattices up to 256×256256 \times 256. Applying this approach to a 3D ±J\pm J spin glass model we estimate the internal energy and entropy at zero temperature; and, using a two-dimensional random walk in energy and order-parameter space, we obtain the (rough) canonical distribution and energy landscape in order-parameter space. Preliminary data suggest that the glass transition temperature is about 1.2 and that better estimates can be obtained with more extensive application of the method.Comment: 22 pages (figures included
    • …
    corecore