20,888 research outputs found

    IoT-Based Vehicle Monitoring and Driver Assistance System Framework for Safety and Smart Fleet Management

    Get PDF
    Curbing road accidents has always been one of the utmost priorities in every country. In Malaysia, Traffic Investigation and Enforcement Department reported that Malaysia’s total number of road accidents has increased from 373,071 to 533,875 in the last decade. One of the significant causes of road accidents is driver’s behaviours. However, drivers’ behaviour was challenging to regulate by the enforcement team or fleet operators, especially heavy vehicles. We proposed adopting the Internet of Things (IoT) and its’ emerging technologies to monitor and alert driver’s behavioural and driving patterns in reducing road accidents. In this work, we proposed a lane tracking and iris detection algorithm to monitor and alert the driver’s behaviour when the vehicle sways away from the lane and the driver feeling drowsy, respectively. We implemented electronic devices such as cameras, a global positioning system module, a global system communication module, and a microcontroller as an intelligent transportation system in the vehicle. We implemented face recognition for person identification using the same in-vehicle camera and recorded the working duration for authentication and operation health monitoring, respectively. With the GPS module, we monitored and alerted against permissible vehicle’s speed accordingly. We integrated IoT on the system for the fleet centre to monitor and alert the driver’s behavioural activities in real-time through the user access portal. We validated it successfully on Malaysian roads.  The outcome of this pilot project benefits the safety of drivers, public road users, and passengers. The impact of this framework leads to a new regulation by the government agencies towards merit and demerit system, real-time fleet monitoring of intelligent transportation systems, and socio-economy such as cheaper health premiums. The big data can be used to predict the driver’s behavioural in the future

    Evaluation Methodologies in Software Protection Research

    Full text link
    Man-at-the-end (MATE) attackers have full control over the system on which the attacked software runs, and try to break the confidentiality or integrity of assets embedded in the software. Both companies and malware authors want to prevent such attacks. This has driven an arms race between attackers and defenders, resulting in a plethora of different protection and analysis methods. However, it remains difficult to measure the strength of protections because MATE attackers can reach their goals in many different ways and a universally accepted evaluation methodology does not exist. This survey systematically reviews the evaluation methodologies of papers on obfuscation, a major class of protections against MATE attacks. For 572 papers, we collected 113 aspects of their evaluation methodologies, ranging from sample set types and sizes, over sample treatment, to performed measurements. We provide detailed insights into how the academic state of the art evaluates both the protections and analyses thereon. In summary, there is a clear need for better evaluation methodologies. We identify nine challenges for software protection evaluations, which represent threats to the validity, reproducibility, and interpretation of research results in the context of MATE attacks

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    An Efficient Authentication Protocol for Smart Grid Communication Based on On-Chip-Error-Correcting Physical Unclonable Function

    Full text link
    Security has become a main concern for the smart grid to move from research and development to industry. The concept of security has usually referred to resistance to threats by an active or passive attacker. However, since smart meters (SMs) are often placed in unprotected areas, physical security has become one of the important security goals in the smart grid. Physical unclonable functions (PUFs) have been largely utilized for ensuring physical security in recent years, though their reliability has remained a major problem to be practically used in cryptographic applications. Although fuzzy extractors have been considered as a solution to solve the reliability problem of PUFs, they put a considerable computational cost to the resource-constrained SMs. To that end, we first propose an on-chip-error-correcting (OCEC) PUF that efficiently generates stable digits for the authentication process. Afterward, we introduce a lightweight authentication protocol between the SMs and neighborhood gateway (NG) based on the proposed PUF. The provable security analysis shows that not only the proposed protocol can stand secure in the Canetti-Krawczyk (CK) adversary model but also provides additional security features. Also, the performance evaluation demonstrates the significant improvement of the proposed scheme in comparison with the state-of-the-art

    Role of Digitalization in Election Voting Through Industry 4.0 Enabling Technologies

    Get PDF
    The election voting system is one of the essential pillars of democracy to elect the representative for ruling the country. In the election voting system, there are multiple areas such as detection of fake voters, illegal activities for fake voting, booth capturing, ballot monitoring, etc., in which Industry 4.0 can be adopted for the application of real-time monitoring, intelligent detection, enhancing security and transparency of voting and other data during the voting. According to previous research, there are no studies that have presented the significance of industry 4.0 technologies for improving the electronic voting system from a sustainability standpoint. To overcome the research gap, this study aims to present literature about Industry 4.0 technologies on the election voting system. We examined individual industry enabling technologies such as blockchain, artificial intelligence (AI), cloud computing, and the Internet of Things (IoT) that have the potential to strengthen the infrastructure of the election voting system. Based upon the analysis, the study has discussed and recommended suggestions for the future scope such as: IoT and cloud computing-based automatic systems for the detection of fake voters and updating voter attendance after the verification of the voter identity; AI-based illegal, and fake voting activities detection through vision node; blockchain-inspired system for the data integrity in between voter and election commission and robotic assistance system for guiding the voter and also for detecting disputes in the premises of election booth

    Key technologies for safe and autonomous drones

    Get PDF
    Drones/UAVs are able to perform air operations that are very difficult to be performed by manned aircrafts. In addition, drones' usage brings significant economic savings and environmental benefits, while reducing risks to human life. In this paper, we present key technologies that enable development of drone systems. The technologies are identified based on the usages of drones (driven by COMP4DRONES project use cases). These technologies are grouped into four categories: U-space capabilities, system functions, payloads, and tools. Also, we present the contributions of the COMP4DRONES project to improve existing technologies. These contributions aim to ease drones’ customization, and enable their safe operation.This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands. The total project budget is 28,590,748.75 EUR (excluding ESIF partners), while the requested grant is 7,983,731.61 EUR to ECSEL JU, and 8,874,523.84 EUR of National and ESIF Funding. The project has been started on 1st October 2019

    A Secure Land Record Management System using Blockchain Technology

    Full text link
    A land record (LR) contains very sensitive information related to land e.g. owner, buyer, etc. Currently, almost all over the world, the LR is maintained by different governmental offices and most of them maintain the LR with paper-based approach. Some of the works focus to digitalize the existing land record management system (LRMS) but with some security concerns. A blockchain-based LRMS can be effective enough to solve the existing issues. This paper proposes a blockchain-based LRMS that (i) digitalizes the existing paper-based system, (ii) ensures LR privacy using an asymmetric cryptosystem, (iii) preserves LR integrity, (iv) facilitates a platform for trading land through an advertising agency, and (v) accelerates the process of changing ownership that saves time significantly. Besides, this paper also proposes a new way of character to integer mapping named C2I table that reduces around 33% overhead of text to integer conversion compared to ASCII table. The experimental results, analyses, and comparisons indicate the effectiveness of the proposed LRMS over the state-of-the-art systems.Comment: 6 pages, 5 tables, 10 figures, ICCIT 202

    Quantum Circuit Implementation and Resource Analysis of LBlock and LiCi

    Full text link
    Due to Grover's algorithm, any exhaustive search attack of block ciphers can achieve a quadratic speed-up. To implement Grover,s exhaustive search and accurately estimate the required resources, one needs to implement the target ciphers as quantum circuits. Recently, there has been increasing interest in quantum circuits implementing lightweight ciphers. In this paper we present the quantum implementations and resource estimates of the lightweight ciphers LBlock and LiCi. We optimize the quantum circuit implementations in the number of gates, required qubits and the circuit depth, and simulate the quantum circuits on ProjectQ. Furthermore, based on the quantum implementations, we analyze the resources required for exhaustive key search attacks of LBlock and LiCi with Grover's algorithm. Finally, we compare the resources for implementing LBlock and LiCi with those of other lightweight ciphers.Comment: 29 pages,21 figure

    AI & Blockchain as sustainable teaching and learning tools to cope with the 4IR

    Full text link
    The Fourth Industrial Revolution (4IR) is transforming the way we live and work, and education is no exception. To cope with the challenges of 4IR, there is a need for innovative and sustainable teaching and learning tools. AI and block chain technologies hold great promise in this regard, with potential benefits such as personalized learning, secure credentialing, and decentralized learning networks. This paper presents a review of existing research on AI and block chain in education, analyzing case studies and exploring the potential benefits and challenges of these technologies. The paper also suggests a unique model for integrating AI and block chain into sustainable teaching and learning practices. Future research directions are discussed, including the need for more empirical studies and the exploration of ethical and social implications. The key summary of this discussion is that, by enhancing accessibility, efficacy, and security in education, AI and blockchain have the potential to revolutionise the field. In order to ensure that students can benefit from these potentially game-changing technologies as technology develops, it will be crucial to find ways to harness its power while minimising hazards. Overall, this paper highlights the potential of AI and block chain as sustainable tools for teaching and learning in the 4IR era and their respective advantages, issues and future prospects have been discussed in this writing
    • …
    corecore