579,514 research outputs found
Research in nonlinear structural and solid mechanics
Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented
Using Rapid Prototyping in Computer Architecture Design Laboratories
This paper describes the undergraduate computer architecture courses and laboratories introduced at Georgia Tech during the past two years. A core sequence of six required courses for computer engineering students has been developed. In this paper, emphasis is placed upon the new core laboratories which utilize commercial CAD tools, FPGAs, hardware emulators, and a VHDL based rapid prototyping approach to simulate, synthesize, and implement prototype computer hardware
History of visual systems in the Systems Engineering Simulator
The Systems Engineering Simulator (SES) houses a variety of real-time computer generated visual systems. The earliest machine dates from the mid-1960's and is one of the first real-time graphics systems in the world. The latest acquisition is the state-of-the-art Evans and Sutherland CT6. Between the span of time from the mid-1960's to the late 1980's, tremendous strides have been made in the real-time graphics world. These strides include advances in both software and hardware engineering. The purpose is to explore the history of the development of these real-time computer generated image systems from the first machine to the present. Hardware advances as well as software algorithm changes are presented. This history is not only quite interesting but also provides us with a perspective with which we can look backward and forward
Engineering visualization utilizing advanced animation
Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed
Some research advances in computer graphics that will enhance applications to engineering design
Research in man/machine interactions and graphics hardware/software that will enhance applications to engineering design was described. Research aspects of executive systems, command languages, and networking used in the computer applications laboratory are mentioned. Finally, a few areas where little or no research is being done were identified
Recommended from our members
4-H Computer & Internet Project
Knowing how to operate a computer and write code is quickly becoming a required 21st century skill. A 4-H computer project will help you learn about software and/or hardware topics
•Learn about computer hardware
•Explore and learn to navigate an operating system and install and use software
•Learn to code and test a simple program
•Learn how computers are used in science, engineering, and technology
This sheet outlines activity ideas at beginning, intermediate, and advanced levels of skill; also gives suggestions on how to tie the activity to STEM, healthy living, citizenship, and leadership goals
Recommended from our members
The Design and Development of a Multi-Disciplinary Project in Embedded Systems Design
As has been noted over the past ten years, “The wall between computer science and electrical engineering has kept the potential of embedded systems at bay. It is time to build a new scientific foundation with embedded systems design as the cornerstone, which will ensure a systematic and even-handed integration of the two fields.”[1] In Baylor University’s School of Engineering & Computer Science, the Embedded Systems course in the Department of Computer Science, and the Embedded Systems Design course in the Department of Electrical and Computer Engineering have been offered independent of each other in the recent past. In the past year, however, this is beginning to change, with plans developing to combine the project portion of the two courses into one multi-disciplinary group project.
This paper will document the two courses – scope and sequence, as well as emphasis, equipment used, and delivery style – highlighting the need for a new and innovative approach at the systematic integration of software and hardware in the design and development of a mutli-disciplinary group project. The beta test of this group project is occurring in the fall 2017 semester, with full first-time full-scale deployment during the spring 2018 semester. The results of this beta test will be discussed, and the lessons learned and planned modifications to the course will be considered.Cockrell School of Engineerin
Numerical propulsion system simulation: An interdisciplinary approach
The tremendous progress being made in computational engineering and the rapid growth in computing power that is resulting from parallel processing now make it feasible to consider the use of computer simulations to gain insights into the complex interactions in aerospace propulsion systems and to evaluate new concepts early in the design process before a commitment to hardware is made. Described here is a NASA initiative to develop a Numerical Propulsion System Simulation (NPSS) capability
- …
