6 research outputs found

    Heartbeat Classification in Wearables Using Multi-layer Perceptron and Time-Frequency Joint Distribution of ECG

    Full text link
    Heartbeat classification using electrocardiogram (ECG) data is a vital assistive technology for wearable health solutions. We propose heartbeat feature classification based on a novel sparse representation using time-frequency joint distribution of ECG. Fundamental to this is a multi-layer perceptron, which incorporates these signatures to detect cardiac arrhythmia. This approach is validated with ECG data from MIT-BIH arrhythmia database. Results show that our approach has an average 95.7% accuracy, an improvement of 22% over state-of-the-art approaches. Additionally, ECG sparse distributed representations generates only 3.7% false negatives, reduction of 89% with respect to existing ECG signal classification techniques.Comment: 6 pages, 7 figures, published in IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE

    A study on stability analysis of atrial repolarization variability using ARX model in sinus rhythm and atrial tachycardia ECGs

    Get PDF
    © 2016 Elsevier Ireland Ltd Background The interaction between the PTa and PP interval dynamics from the surface ECG is seldom explained. Mathematical modeling of these intervals is of interest in finding the relationship between the heart rate and repolarization variability. Objective The goal of this paper is to assess the bounded input bounded output (BIBO) stability in PTa interval (PTaI) dynamics using autoregressive exogenous (ARX) model and to investigate the reason for causing instability in the atrial repolarization process. Methods Twenty-five male subjects in normal sinus rhythm (NSR) and ten male subjects experiencing atrial tachycardia (AT) were included in this study. Five minute long, modified limb lead (MLL) ECGs were recorded with an EDAN SE-1010 PC ECG system. The number of minute ECGs with unstable segments (N us ) and the frequency of premature activation (PA) (i.e. atrial activation) were counted for each ECG recording and compared between AT and NSR subjects. Results The instability in PTaI dynamics was quantified by measuring the numbers of unstable segments in ECG data for each subject. The unstable segments in the PTaI dynamics were associated with the frequency of PA. The presence of PA is not the only factor causing the instability in PTaI dynamics in NSR subjects, and it is found that the cause of instability is mainly due to the heart rate variability (HRV). C onclusion The ARX model showed better prediction of PTa interval dynamics in both groups. The frequency of PA is significantly higher in AT patients than NSR subjects. A more complex model is needed to better identify and characterize healthy heart dynamics

    Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification

    Get PDF
    Automatic feature extraction and classification are two main tasks in abnormal ECG beat recognition. Feature extraction is an important prerequisite prior to classification since it provides the classifier with input features, and the performance of classifier depends significantly on the quality of these features. This study develops an effective method to extract low-dimensional ECG beat feature vectors. It employs wavelet multi-resolution analysis to extract time-frequency domain features and then applies principle component analysis to reduce the dimension of the feature vector. In classification, 12-element feature vectors characterizing six types of beats are used as inputs for one-versus-one support vector machine, which is conducted in form of 10-fold cross validation with beat-based and record-based training schemes. Tested upon a total of 107049 beats from MIT-BIH arrhythmia database, our method has achieved average sensitivity, specificity and accuracy of 99.09%, 99.82% and 99.70%, respectively, using the beat-based training scheme, and 44.40%, 88.88% and 81.47%, respectively, using the record-based training scheme

    A comparative study of signal processing methods for structural health monitoring

    Get PDF
    In this paper four non-parametric and five parametric signal processing techniques are reviewed and their performances are compared through application to a sample exponentially damped synthetic signal with closely-spaced frequencies representing the ambient response of structures. The non-parametric methods are Fourier transform, periodogram estimate of power spectral density, wavelet transform, and empirical mode decomposition with Hilbert spectral analysis (Hilbert-Huang transform). The parametric methods are pseudospectrum estimate using the multiple signal categorization (MUSIC), empirical wavelet transform, approximate Prony method, matrix pencil method, and the estimation of signal parameters by rotational invariance technique (ESPRIT) method. The performances of different methods are studied statistically using the Monte Carlo simulation and the results are presented in terms of average errors of multiple sample analyses

    Screening strategies for atrial fibrillation:A systematic review and cost-effectiveness analysis

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) is a common cardiac arrhythmia that increases the risk of thromboembolic events. Anticoagulation therapy to prevent AF-related stroke has been shown to be cost-effective. A national screening programme for AF may prevent AF-related events, but would involve a substantial investment of NHS resources. OBJECTIVES: To conduct a systematic review of the diagnostic test accuracy (DTA) of screening tests for AF, update a systematic review of comparative studies evaluating screening strategies for AF, develop an economic model to compare the cost-effectiveness of different screening strategies and review observational studies of AF screening to provide inputs to the model. DESIGN: Systematic review, meta-analysis and cost-effectiveness analysis. SETTING: Primary care. PARTICIPANTS: Adults. INTERVENTION: Screening strategies, defined by screening test, age at initial and final screens, screening interval and format of screening {systematic opportunistic screening [individuals offered screening if they consult with their general practitioner (GP)] or systematic population screening (when all eligible individuals are invited to screening)}. MAIN OUTCOME MEASURES: Sensitivity, specificity and diagnostic odds ratios; the odds ratio of detecting new AF cases compared with no screening; and the mean incremental net benefit compared with no screening. REVIEW METHODS: Two reviewers screened the search results, extracted data and assessed the risk of bias. A DTA meta-analysis was perfomed, and a decision tree and Markov model was used to evaluate the cost-effectiveness of the screening strategies. RESULTS: Diagnostic test accuracy depended on the screening test and how it was interpreted. In general, the screening tests identified in our review had high sensitivity (> 0.9). Systematic population and systematic opportunistic screening strategies were found to be similarly effective, with an estimated 170 individuals needed to be screened to detect one additional AF case compared with no screening. Systematic opportunistic screening was more likely to be cost-effective than systematic population screening, as long as the uptake of opportunistic screening observed in randomised controlled trials translates to practice. Modified blood pressure monitors, photoplethysmography or nurse pulse palpation were more likely to be cost-effective than other screening tests. A screening strategy with an initial screening age of 65 years and repeated screens every 5 years until age 80 years was likely to be cost-effective, provided that compliance with treatment does not decline with increasing age. CONCLUSIONS: A national screening programme for AF is likely to represent a cost-effective use of resources. Systematic opportunistic screening is more likely to be cost-effective than systematic population screening. Nurse pulse palpation or modified blood pressure monitors would be appropriate screening tests, with confirmation by diagnostic 12-lead electrocardiography interpreted by a trained GP, with referral to a specialist in the case of an unclear diagnosis. Implementation strategies to operationalise uptake of systematic opportunistic screening in primary care should accompany any screening recommendations. LIMITATIONS: Many inputs for the economic model relied on a single trial [the Screening for Atrial Fibrillation in the Elderly (SAFE) study] and DTA results were based on a few studies at high risk of bias/of low applicability. FUTURE WORK: Comparative studies measuring long-term outcomes of screening strategies and DTA studies for new, emerging technologies and to replicate the results for photoplethysmography and GP interpretation of 12-lead electrocardiography in a screening population. STUDY REGISTRATION: This study is registered as PROSPERO CRD42014013739. FUNDING: The National Institute for Health Research Health Technology Assessment programme

    Screening strategies for atrial fibrillation:A systematic review and cost-effectiveness analysis

    Get PDF
    Background: Atrial fibrillation (AF) is a common cardiac arrhythmia that increases the risk of thromboembolic events. Anticoagulation therapy to prevent AF-related stroke has been shown to be cost-effective. A national screening programme for AF may prevent AF-related events, but would involve a substantial investment of NHS resources. Objectives: To conduct a systematic review of the diagnostic test accuracy (DTA) of screening tests for AF, update a systematic review of comparative studies evaluating screening strategies for AF, develop an economic model to compare the cost-effectiveness of different screening strategies and review observational studies of AF screening to provide inputs to the model. Design: Systematic review, meta-analysis and cost-effectiveness analysis. Setting: Primary care. Participants: Adults. Intervention: Screening strategies, defined by screening test, age at initial and final screens, screening interval and format of screening {systematic opportunistic screening [individuals offered screening if they consult with their general practitioner (GP)] or systematic population screening (when all eligible individuals are invited to screening)}. Main outcome measures: Sensitivity, specificity and diagnostic odds ratios; the odds ratio of detecting new AF cases compared with no screening; and the mean incremental net benefit compared with no screening. Review methods: Two reviewers screened the search results, extracted data and assessed the risk of bias. A DTA meta-analysis was perfomed, and a decision tree and Markov model was used to evaluate the cost-effectiveness of the screening strategies. Results: Diagnostic test accuracy depended on the screening test and how it was interpreted. In general, the screening tests identified in our review had high sensitivity (> 0.9). Systematic population and systematic opportunistic screening strategies were found to be similarly effective, with an estimated 170 individuals needed to be screened to detect one additional AF case compared with no screening. Systematic opportunistic screening was more likely to be cost-effective than systematic population screening, as long as the uptake of opportunistic screening observed in randomised controlled trials translates to practice. Modified blood pressure monitors, photoplethysmography or nurse pulse palpation were more likely to be cost-effective than other screening tests. A screening strategy with an initial screening age of 65 years and repeated screens every 5 years until age 80 years was likely to be cost-effective, provided that compliance with treatment does not decline with increasing age. Conclusions: A national screening programme for AF is likely to represent a cost-effective use of resources. Systematic opportunistic screening is more likely to be cost-effective than systematic population screening. Nurse pulse palpation or modified blood pressure monitors would be appropriate screening tests, with confirmation by diagnostic 12-lead electrocardiography interpreted by a trained GP, with referral to a specialist in the case of an unclear diagnosis. Implementation strategies to operationalise uptake of systematic opportunistic screening in primary care should accompany any screening recommendations. Limitations: Many inputs for the economic model relied on a single trial [the Screening for Atrial Fibrillation in the Elderly (SAFE) study] and DTA results were based on a few studies at high risk of bias/of low applicability. Future work: Comparative studies measuring long-term outcomes of screening strategies and DTA studies for new, emerging technologies and to replicate the results for photoplethysmography and GP interpretation of 12-lead electrocardiography in a screening population. Study registration: This study is registered as PROSPERO CRD42014013739. Funding: The National Institute for Health Research Health Technology Assessment programme
    corecore