916,558 research outputs found
Machine Learning Bell Nonlocality in Quantum Many-body Systems
Machine learning, the core of artificial intelligence and big data science,
is one of today's most rapidly growing interdisciplinary fields. Recently, its
tools and techniques have been adopted to tackle intricate quantum many-body
problems. In this work, we introduce machine learning techniques to the
detection of quantum nonlocality in many-body systems, with a focus on the
restricted-Boltzmann-machine (RBM) architecture. Using reinforcement learning,
we demonstrate that RBM is capable of finding the maximum quantum violations of
multipartite Bell inequalities with given measurement settings. Our results
build a novel bridge between computer-science-based machine learning and
quantum many-body nonlocality, which will benefit future studies in both areas.Comment: Main Text: 7 pages, 3 figures. Supplementary Material: 2 pages, 3
figure
A general guide to applying machine learning to computer architecture
The resurgence of machine learning since the late 1990s has been enabled by significant advances in computing performance and the growth of big data. The ability of these algorithms to detect complex patterns in data which are extremely difficult to achieve manually, helps to produce effective predictive models. Whilst computer architects have been accelerating the performance of machine learning algorithms with GPUs and custom hardware, there have been few implementations leveraging these algorithms to improve the computer system performance. The work that has been conducted, however, has produced considerably promising results.
The purpose of this paper is to serve as a foundational base and guide to future computer
architecture research seeking to make use of machine learning models for improving system efficiency.
We describe a method that highlights when, why, and how to utilize machine learning
models for improving system performance and provide a relevant example showcasing the effectiveness of applying machine learning in computer architecture. We describe a process of data
generation every execution quantum and parameter engineering. This is followed by a survey of a
set of popular machine learning models. We discuss their strengths and weaknesses and provide
an evaluation of implementations for the purpose of creating a workload performance predictor
for different core types in an x86 processor. The predictions can then be exploited by a scheduler
for heterogeneous processors to improve the system throughput. The algorithms of focus are
stochastic gradient descent based linear regression, decision trees, random forests, artificial neural
networks, and k-nearest neighbors.This work has been supported by the European Research Council (ERC) Advanced Grant RoMoL (Grant Agreemnt 321253) and by the Spanish Ministry of Science and Innovation (contract TIN 2015-65316P).Peer ReviewedPostprint (published version
Convex Analysis and Optimization with Submodular Functions: a Tutorial
Set-functions appear in many areas of computer science and applied
mathematics, such as machine learning, computer vision, operations research or
electrical networks. Among these set-functions, submodular functions play an
important role, similar to convex functions on vector spaces. In this tutorial,
the theory of submodular functions is presented, in a self-contained way, with
all results shown from first principles. A good knowledge of convex analysis is
assumed
Discriminative Cooperative Networks for Detecting Phase Transitions
The classification of states of matter and their corresponding phase
transitions is a special kind of machine-learning task, where physical data
allow for the analysis of new algorithms, which have not been considered in the
general computer-science setting so far. Here we introduce an unsupervised
machine-learning scheme for detecting phase transitions with a pair of
discriminative cooperative networks (DCN). In this scheme, a guesser network
and a learner network cooperate to detect phase transitions from fully
unlabeled data. The new scheme is efficient enough for dealing with phase
diagrams in two-dimensional parameter spaces, where we can utilize an active
contour model -- the snake -- from computer vision to host the two networks.
The snake, with a DCN "brain", moves and learns actively in the parameter
space, and locates phase boundaries automatically
Technology assessment of advanced automation for space missions
Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology
Optimaztion of Fantasy Basketball Lineups via Machine Learning
Machine learning is providing a way to glean never before known insights from the data that gets recorded every day. This paper examines the application of machine learning to the novel field of Daily Fantasy Basketball. The particularities of the fantasy basketball ruleset and playstyle are discussed, and then the results of a data science case study are reviewed. The data set consists of player performance statistics as well as Fantasy Points, implied team total, DvP, and player status. The end goal is to evaluate how accurately the computer can predict a player’s fantasy performance based off a chosen feature set, selection algorithm, and probabilistic methods
- …
