1,888,973 research outputs found

    Summer learning experience for girls in grades 7–9 boosts confidence and interest in computing careers

    Get PDF
    Academic exposure to computer science, encouragement to study computer science, and connecting personal interests to computing areas influence women to pursue degrees in computer science. Guided by these recommendations, we designed and offered a summer learning experience for girls in grades 7--9 in summer 2016. The goal of the program was to improve girls\u27 perceptions of learning computer science through academic exposure in the informal setting of a girls-only summer camp. In this paper we present a study of the girls\u27 perceptions of CS learning. Four constructs were used to develop pre- and post-survey items: computing confidence, intent to persist, social supports, and computing outcomes expectations. The camp appeared to have positively influenced the girls on two of the four constructs, by improving computing confidence and positive perceptions of computing careers

    Exploring resilience for effective learning in computer science education

    Get PDF
    Background and context: Many factors have been shown to be important for supporting effective learning and teaching – and thus progression and success – in formal educational contexts. While factors such as key introductory-level computer science knowledge and skills, as well as pre-university learning and qualifications, have been extensively explored, the impact of measures of positive psychology are less well understood for the discipline of computer science. This preliminary work investigates the relationships between effective learning and success, and two measures of positive psychology, Grit (Duckworth’s 12-item Grit scale) [6] and the Nicolson McBride Resilience Quotient (NMRQ) [3], in success in first-year undergraduate computer science to provide insight into the factors that impact on the transition from secondary education into tertiary education

    UNO Website CIS&T Computer Science Learning Center homepage

    Get PDF
    The Computer Science Learning Center (CSLC) offers peer-based assistance to several other CS core courses through peer tutoring and review sessions. The CSLC serves all UNO students taking these courses free of charge. Students seeking to work with a tutor only need to come to the center; no appointment is necessary for most of these core courses

    Flexible learning in computer science

    Get PDF
    This paper outlines the concept of Flexible Pedagogy and how it can assist in addressing some of the issues facing STEM disciplines in general, and Computer Science in particular. The paper considers what flexible pedagogy is and how technologies developed by Computer Science can enable flexibility. It then describes some of the issues facing STEM education, with a particular focus on Computer Science education in Higher Education. Finally, it considers how flexible approaches to teaching and learning are particularly pertinent to the issues faced in Computer Science and future opportunities

    Hurdles and requirements of an African experience of e-learning

    Full text link
    Today, in a tense context of globalisation of economics and finance, education and training must obey global requirements. Computer science and new learning environments have become crucial in developing countries. Information and Communication technologies (ICT) are present in telecommunications, the banking sector, health and education itself. This article underlines the role of e- and distance learning in education, research and societies. Frontiers are shown and ways for best practices are presented. Furthermore, it underlines the challenge of teaching computer science in a poor industrial environment. Technological background is discussed as well as financial and pedagogical aspects. (DIPF/Orig.

    Computer-based collaborative concept mapping : motivating Indian secondary students to learn science : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Education at Massey University, Manawatu, New Zealand

    Get PDF
    This is a study of the design, development, implementation and evaluation of a teaching and learning intervention. The overarching aim of the study was to investigate the effectiveness of the intervention ‘Computer-based Collaborative Concept Mapping’ (CCCM) on Indian secondary students’ conceptual learning and motivation towards science learning. CCCM was designed based on constructivist and cognitive theories of learning and reinforced by recent motivation theories. The study followed a Design-based research (DBR) methodology. CCCM was implemented in two selected Indian secondary grade 9 classrooms. A quasi-experimental Solomon Four-Group research design was adopted to carry out the teaching experiment and mixed methods of data collection were used to generate and collect data from 241 secondary students and the two science teachers. The intervention was designed and piloted to check the feasibility for further implementation. The actual implementation of CCCM followed the pilot testing for 10 weeks. Students studied science concepts in small groups using the computer software Inspiration. Students constructed concept maps on various topics after discussing the concepts in their groups. The achievement test ATS9 was designed and administered as a pre-post-test to examine the conceptual learning and science achievement. Students’ responses were analysed to examine their individual conceptual learning whereas group concept maps were analysed to assess group learning. The motivation questionnaire SMTSL was also administered as a pre-post-test to investigate students’ initial and final motivation to learn science. At the end of the teaching experiment, the science teachers and two groups of students were interviewed. Analyses of the quantitative data suggested a statistically significant enhancement of science achievement, conceptual learning and motivation towards science learning. The qualitative data findings revealed positive attitudes of students and teachers towards the CCCM use. Students and teachers believed that CCCM use could promote conceptual learning and motivate students to learn science. Both students and teachers preferred CCCM over on-going traditional didactic methods of teaching-learning. Some enablers and barriers identified by teachers and students in the Indian science classroom context are also explored and discussed. A framework for enhancing secondary school students’ motivation towards science learning and conceptual learning is proposed based on the findings. The findings of the study also contribute to addressing the prevailing learning crisis in Indian secondary school science classrooms by offering CCCM an active and participatory instructional strategy as envisioned by the Indian National Curriculum Framework 2005

    Generating Multimedia Components for M-Learning

    Get PDF
    The paper proposes a solution to generate template based multimedia components for instruction and learning available both for computer based applications and for mobile devices. The field of research is situated at the intersection of computer science, mobile tools and e-learning and is generically named mobile learning or M-learning. The research goal is to provide access to computer based training resources from any location and to adapt the training content to the specific features of mobile devices, communication environment, users' preferences and users' knowledge. To become important tools in education field, the technical solutions proposed will follow to use the potential of mobile devices.M-learning, mobile devices, MPEG-21 standard, multimedia databases
    corecore