1 research outputs found

    An assurance level sensitive UML profile for supporting DO-178C

    Get PDF
    Several model-based approaches have been proposed to ease the process of developing certifiable safety-critical software. In this thesis, we are interested in airborne software which must comply with DO-178C standard. However, existing approaches do not provide complete support for all the activities of the software life cycle as defined by DO-178C. In this thesis, we propose an UML profile that captures the concepts of DO-178C and its supplements in order to model the evidence required for certification. This profile provides modeling constructs for the definition of a DO-178C compliant software life cycle, the specification of the software requirements, the specification of verification data and finally the specification of the traceability that is requested by DO-178C. Furthermore, this profile has the unique feature of providing means to specify the objectives and activities to be performed throughout the software life cycle depending on the targeted assurance level and applied DO-178C supplements. We implemented the proposed profile within Papyrus, an UML modeling environment. We used the profile to model a realistic example of airborne software. Specifically, we illustrated the usefulness of the profile through four use cases
    corecore