1,425,889 research outputs found
Proceedings of Abstracts Engineering and Computer Science Research Conference 2019
© 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care
Multimodal animation control
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (leaf 44).In this thesis, we present a multimodal animation control system. Our approach is based on a human-centric computing model proposed by Project Oxygen at MIT Laboratory for Computer Science. Our system allows the user to create and control animation in real time using the speech interface developed using SpeechBuilder. The user can also fall back to traditional input modes should the speech interface fail. We assume that the user has no prior knowledge and experience in animation and yet enable him to create interesting and meaningful animation naturally and fluently. We argue that our system can be used in a number of applications ranging from PowerPoint presentations to simulations to children's storytelling tools.by Hana Kim.M.Eng
Ethical and Social Aspects of Self-Driving Cars
As an envisaged future of transportation, self-driving cars are being
discussed from various perspectives, including social, economical, engineering,
computer science, design, and ethics. On the one hand, self-driving cars
present new engineering problems that are being gradually successfully solved.
On the other hand, social and ethical problems are typically being presented in
the form of an idealized unsolvable decision-making problem, the so-called
trolley problem, which is grossly misleading. We argue that an applied
engineering ethical approach for the development of new technology is what is
needed; the approach should be applied, meaning that it should focus on the
analysis of complex real-world engineering problems. Software plays a crucial
role for the control of self-driving cars; therefore, software engineering
solutions should seriously handle ethical and social considerations. In this
paper we take a closer look at the regulative instruments, standards, design,
and implementations of components, systems, and services and we present
practical social and ethical challenges that have to be met, as well as novel
expectations for software engineering.Comment: 11 pages, 3 figures, 2 table
Life sciences Spacelab Mission Development test 3 (SMD 3) data management report
Development of a permanent data system for SMD tests was studied that would simulate all elements of the shuttle onboard, telemetry, and ground data systems that are involved with spacelab operations. The onboard data system (ODS) and the ground data system (GDS) were utilized. The air-to-ground link was simulated by a hardwired computer-to-computer interface. A patch board system was used on board to select experiment inputs, and the downlink configuration from the ODS was changed by a crew keyboard entry to support each experiment. The ODS provided a CRT display of experiment parameters to enable the crew to monitor experiment performance. An onboard analog system, with recording capability, was installed to handle high rate data and to provide a backup to the digital system. The GDS accomplished engineering unit conversion and limit sensing, and provided realtime parameter display on CRT's in the science monitoring area and the test control area
Temporal perception of visual-haptic events in multimodal telepresence system
Book synopsis: Haptic interfaces are divided into two main categories: force feedback and tactile. Force feedback interfaces are used to explore and modify remote/virtual objects in three physical dimensions in applications including computer-aided design, computer-assisted surgery, and computer-aided assembly. Tactile interfaces deal with surface properties such as roughness, smoothness, and temperature. Haptic research is intrinsically multi-disciplinary, incorporating computer science/engineering, control, robotics, psychophysics, and human motor control. By extending the scope of research in haptics, advances can be achieved in existing applications such as computer-aided design (CAD), tele-surgery, rehabilitation, scientific visualization, robot-assisted surgery, authentication, and graphical user interfaces (GUI), to name a few. Advances in Haptics presents a number of recent contributions to the field of haptics. Authors from around the world present the results of their research on various issues in the field of haptics
Collaborative Verification-Driven Engineering of Hybrid Systems
Hybrid systems with both discrete and continuous dynamics are an important
model for real-world cyber-physical systems. The key challenge is to ensure
their correct functioning w.r.t. safety requirements. Promising techniques to
ensure safety seem to be model-driven engineering to develop hybrid systems in
a well-defined and traceable manner, and formal verification to prove their
correctness. Their combination forms the vision of verification-driven
engineering. Often, hybrid systems are rather complex in that they require
expertise from many domains (e.g., robotics, control systems, computer science,
software engineering, and mechanical engineering). Moreover, despite the
remarkable progress in automating formal verification of hybrid systems, the
construction of proofs of complex systems often requires nontrivial human
guidance, since hybrid systems verification tools solve undecidable problems.
It is, thus, not uncommon for development and verification teams to consist of
many players with diverse expertise. This paper introduces a
verification-driven engineering toolset that extends our previous work on
hybrid and arithmetic verification with tools for (i) graphical (UML) and
textual modeling of hybrid systems, (ii) exchanging and comparing models and
proofs, and (iii) managing verification tasks. This toolset makes it easier to
tackle large-scale verification tasks
- …
