321,159 research outputs found

    Modelling and simulation of magnetic induction in magnetic particle imaging system

    Get PDF
    In the last century, tomographic imaging has become an essential tool for disease diagnosis. There are several dominant tomographic imaging methods used for medical application such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and single photon emission computed tomography (SPECT)

    Role Of Tc99m-Besilesomab Scan With The Added Benefit Of Single Photon Emission Computed Tomography/ Computed Tomography (Spect/Ct) In Localising Infection

    Get PDF
    Imbasan Tc99m-besilesomab dengan manfaat tambahan Single Photon Emission Computed Tomography/ Computed Tomography (SPECT/CT) untuk mengenal pasti fokus lokasi infeksi dalam tubuh pesakit Role of Tc99m-besilesomab scan with the added benefit of Single Photon Emission Computed Tomography/ Computed Tomography (SPECT/CT) in localising infectio

    Aplikasi Teknik Computed Tomography (CT) Scan Dalam Penelitian Porositas Tanah Dan Perkembangan Akar

    Full text link
    : Root development and water movement in the soil profile are highly affected by the shape, size and orientation of the soil pores. The high spatial and temporal variability of soil porosity required a quick and repeated non-distruptive technique to measure it in order to develop a more suitable land management recommendation. The use of computed tomography (CT) scan, which has been used for years in medical examination of patient, can be utilized in quantifying rapidly and accurately soil porosity and other soil characteristics as well as root development in the soil sample. The advantage of CT scan technique over other techniques such as soil water characterictis curve and thin section is the possibility to quantify the amount, spatial distribution, fractal dimension, and shape of the soil pores from 3-D high resolution image produced. The aim of this review is to offer a perspective on the possible application of CT scan technique in soil porosity and root studies to obtain more detail understanding of soil and root interactions. With that understanding, one can develop more accurate soil and crop management to improve agriculture productivity

    Evaluation of the relationships between computed tomography features, pathological findings, and rrognostic risk assessment in gastrointestinal stromal tumors

    Get PDF
    Objectives The aim of this study was to correlate computed tomography (CT) findings with pathology in gastrointestinal stromal tumors (GISTs). Methods A retrospective evaluation of CT images of 44 patients with GISTs was performed. Computed tomography findings analyzed were location, size, margins, degree and pattern of contrast enhancement, angiogenesis, necrosis, signs of invasion, peritoneal effusion, peritoneal implants, surface ulceration, and calcifications. Associations between CT features and mitotic rate, Miettinen classes of risk, lesions size, and among CT features were investigated. χ 2 Test and Fisher test were performed. Results Mitotic rate was associated with margins (P = 0.016) and with adjacent organ invasion (P = 0.043). Pattern of contrast enhancement (P = 0.002), angiogenesis (P = 0.006), necrosis (P = 0.006), invasion of adjacent organs (P = 0.011), and margins (P = 0.006) were associated with classes of risk. Several associations (P < 0.05) between lesion size and CT features and among all the investigated CT features were found. Conclusions Computed tomography features could reflect GIST biology being associated with the mitotic rate and with classes of risk

    Realistic CT image simulation tools for laboratory based X-ray CT at UGCT

    Get PDF
    In laboratory based X-ray Computed Tomography (CT), the grey values in the resulting CT image depend on several scanning conditions such as the emitted spectrum, the response characteristics of the detector and beam filtration. Furthermore, due to beam hardening also the morphology and composition of the sample itself will have a significant influence. Therefore, to optimise scanning conditions simulations which incorporate all factors determining the imaging process are required. In this paper, two programs developed at the Centre for X-ray Tomography of the Ghent University (UGCT) are presented which allow a complete and realistic simulation of the obtained CT image

    Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel

    Get PDF
    Creep cavitation in an ex-service nuclear steam header Type 316 stainless steel sample is investigated through a multiscale tomography workflow spanning eight orders of magnitude, combining X-ray computed tomography (CT), plasma focused ion beam (FIB) scanning electron microscope (SEM) imaging and scanning transmission electron microscope (STEM) tomography. Guided by microscale X-ray CT, nanoscale X-ray CT is used to investigate the size and morphology of cavities at a triple point of grain boundaries. In order to understand the factors affecting the extent of cavitation, the orientation and crystallographic misorientation of each boundary is characterised using electron backscatter diffraction (EBSD). Additionally, in order to better understand boundary phase growth, the chemistry of a single boundary and its associated secondary phase precipitates is probed through STEM energy dispersive X-ray (EDX) tomography. The difference in cavitation of the three grain boundaries investigated suggests that the orientation of grain boundaries with respect to the direction of principal stress is important in the promotion of cavity formation
    corecore