9 research outputs found

    Asymptotic Analysis on Spatial Coupling Coding for Two-Way Relay Channels

    Full text link
    Compute-and-forward relaying is effective to increase bandwidth efficiency of wireless two-way relay channels. In a compute-and-forward scheme, a relay tries to decode a linear combination composed of transmitted messages from other terminals or relays. Design for error correcting codes and its decoding algorithms suitable for compute-and-forward relaying schemes are still important issue to be studied. In this paper, we will present an asymptotic performance analysis on LDPC codes over two-way relay channels based on density evolution (DE). Because of the asymmetric nature of the channel, we employ the population dynamics DE combined with DE formulas for asymmetric channels to obtain BP thresholds. In addition, we also evaluate the asymptotic performance of spatially coupled LDPC codes for two-way relay channels. The results indicate that the spatial coupling codes yield improvements in the BP threshold compared with corresponding uncoupled codes for two-way relay channels.Comment: 5 page

    CFMA (Compute-Forward Multiple Access) and its Applications in Network Information Theory

    Get PDF
    While both fundamental limits and system implementations are well understood for the point-to-point communication system, much less is developed for general communication networks. This thesis contributes towards the design and analysis of advanced coding schemes for multi-user communication networks with structured codes. The first part of the thesis investigates the usefulness of lattice codes in Gaussian networks with a generalized compute-and-forward scheme. As an application, we introduce a novel multiple access technique --- Compute-Forward Multiple Access (CFMA), and show that it achieves the capacity region of the Gaussian multiple access channel (MAC) with low receiver complexities. Similar coding schemes are also devised for other multi-user networks, including the Gaussian MAC with states, the two-way relay channel, the many-to-one interference channel, etc., demonstrating improvements of system performance because of the good interference mitigation property of lattice codes. As a common theme in the thesis, computing the sum of codewords over a Gaussian MAC is of particular theoretical importance. We study this problem with nested linear codes, and improve upon the currently best known results obtained by nested lattice codes. Inspired by the advantages of linear and lattice codes in Gaussian networks, we make a further step towards understanding intrinsic properties of the sum of linear codes. The final part of the thesis introduces the notion of typical sumset and presents asymptotic results on the typical sumset size of linear codes. The results offer new insight to coding schemes with structured codes

    Compute-forward multiple access (CFMA) with nested LDPC codes

    No full text
    Inspired by the compute-and-forward scheme from Nazer and Gastpar, a novel multiple-access scheme introduced by Zhu and Gastpar makes use of nested lattice codes and sequential decoding of linear combinations of codewords to recover the individual messages. This strategy, coined compute-forward multiple access (CFMA), provably achieves points on the dominant face of the multiple-access capacity region while circumventing the need of time sharing or rate splitting. For a two-user multiple-access channel (MAC), we propose a practical procedure to design suitable codes from off-the-shelf LDPC codes and present a sequential belief propagation decoder with complexity comparable with that of point-to-point decoders. We demonstrate the potential of our strategy by comparing several numerical evaluations with theoretical limits
    corecore