4,013 research outputs found

    Robust Distributed Fusion with Labeled Random Finite Sets

    Get PDF
    This paper considers the problem of the distributed fusion of multi-object posteriors in the labeled random finite set filtering framework, using Generalized Covariance Intersection (GCI) method. Our analysis shows that GCI fusion with labeled multi-object densities strongly relies on label consistencies between local multi-object posteriors at different sensor nodes, and hence suffers from a severe performance degradation when perfect label consistencies are violated. Moreover, we mathematically analyze this phenomenon from the perspective of Principle of Minimum Discrimination Information and the so called yes-object probability. Inspired by the analysis, we propose a novel and general solution for the distributed fusion with labeled multi-object densities that is robust to label inconsistencies between sensors. Specifically, the labeled multi-object posteriors are firstly marginalized to their unlabeled posteriors which are then fused using GCI method. We also introduce a principled method to construct the labeled fused density and produce tracks formally. Based on the developed theoretical framework, we present tractable algorithms for the family of generalized labeled multi-Bernoulli (GLMB) filters including δ\delta-GLMB, marginalized δ\delta-GLMB and labeled multi-Bernoulli filters. The robustness and efficiency of the proposed distributed fusion algorithm are demonstrated in challenging tracking scenarios via numerical experiments.Comment: 17pages, 23 figure

    Transferability of Convolutional Neural Networks in Stationary Learning Tasks

    Full text link
    Recent advances in hardware and big data acquisition have accelerated the development of deep learning techniques. For an extended period of time, increasing the model complexity has led to performance improvements for various tasks. However, this trend is becoming unsustainable and there is a need for alternative, computationally lighter methods. In this paper, we introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems. To accomplish this we investigate the properties of CNNs for tasks where the underlying signals are stationary. We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining. This claim is supported by our theoretical analysis, which provides a bound on the performance degradation. Additionally, we conduct thorough experimental analysis on two tasks: multi-target tracking and mobile infrastructure on demand. Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten. Thus, CNN architectures provide solutions to these problems at previously computationally intractable scales.Comment: 14 pages, 7 figures, for associated code see https://github.com/damowerko/mt

    Distributed Multi-Object Tracking Under Limited Field of View Heterogeneous Sensors with Density Clustering

    Full text link
    We consider the problem of tracking multiple, unknown, and time-varying numbers of objects using a distributed network of heterogeneous sensors. In an effort to derive a formulation for practical settings, we consider limited and unknown sensor field-of-views (FoVs), sensors with limited local computational resources and communication channel capacity. The resulting distributed multi-object tracking algorithm involves solving an NP-hard multidimensional assignment problem either optimally for small-size problems or sub-optimally for general practical problems. For general problems, we propose an efficient distributed multi-object tracking algorithm that performs track-to-track fusion using a clustering-based analysis of the state space transformed into a density space to mitigate the complexity of the assignment problem. The proposed algorithm can more efficiently group local track estimates for fusion than existing approaches. To ensure we achieve globally consistent identities for tracks across a network of nodes as objects move between FoVs, we develop a graph-based algorithm to achieve label consensus and minimise track segmentation. Numerical experiments with a synthetic and a real-world trajectory dataset demonstrate that our proposed method is significantly more computationally efficient than state-of-the-art solutions, achieving similar tracking accuracy and bandwidth requirements but with improved label consistency

    Arithmetic Average Density Fusion -- Part II: Unified Derivation for Unlabeled and Labeled RFS Fusion

    Full text link
    As a fundamental information fusion approach, the arithmetic average (AA) fusion has recently been investigated for various random finite set (RFS) filter fusion in the context of multi-sensor multi-target tracking. It is not a straightforward extension of the ordinary density-AA fusion to the RFS distribution but has to preserve the form of the fusing multi-target density. In this work, we first propose a statistical concept, probability hypothesis density (PHD) consistency, and explain how it can be achieved by the PHD-AA fusion and lead to more accurate and robust detection and localization of the present targets. This forms a both theoretically sound and technically meaningful reason for performing inter-filter PHD AA-fusion/consensus, while preserving the form of the fusing RFS filter. Then, we derive and analyze the proper AA fusion formulations for most existing unlabeled/labeled RFS filters basing on the (labeled) PHD-AA/consistency. These derivations are theoretically unified, exact, need no approximation and greatly enable heterogenous unlabeled and labeled RFS density fusion which is separately demonstrated in two consequent companion papers.Comment: 13 pages, 4 figures, 1 tabl
    • …
    corecore