4 research outputs found

    Bounding Bloat in Genetic Programming

    Full text link
    While many optimization problems work with a fixed number of decision variables and thus a fixed-length representation of possible solutions, genetic programming (GP) works on variable-length representations. A naturally occurring problem is that of bloat (unnecessary growth of solutions) slowing down optimization. Theoretical analyses could so far not bound bloat and required explicit assumptions on the magnitude of bloat. In this paper we analyze bloat in mutation-based genetic programming for the two test functions ORDER and MAJORITY. We overcome previous assumptions on the magnitude of bloat and give matching or close-to-matching upper and lower bounds for the expected optimization time. In particular, we show that the (1+1) GP takes (i) Θ(Tinit+nlogn)\Theta(T_{init} + n \log n) iterations with bloat control on ORDER as well as MAJORITY; and (ii) O(TinitlogTinit+n(logn)3)O(T_{init} \log T_{init} + n (\log n)^3) and Ω(Tinit+nlogn)\Omega(T_{init} + n \log n) (and Ω(TinitlogTinit)\Omega(T_{init} \log T_{init}) for n=1n=1) iterations without bloat control on MAJORITY.Comment: An extended abstract has been published at GECCO 201

    Destructiveness of Lexicographic Parsimony Pressure and Alleviation by a Concatenation Crossover in Genetic Programming

    Full text link
    For theoretical analyses there are two specifics distinguishing GP from many other areas of evolutionary computation. First, the variable size representations, in particular yielding a possible bloat (i.e. the growth of individuals with redundant parts). Second, the role and realization of crossover, which is particularly central in GP due to the tree-based representation. Whereas some theoretical work on GP has studied the effects of bloat, crossover had a surprisingly little share in this work. We analyze a simple crossover operator in combination with local search, where a preference for small solutions minimizes bloat (lexicographic parsimony pressure); the resulting algorithm is denoted Concatenation Crossover GP. For this purpose three variants of the well-studied MAJORITY test function with large plateaus are considered. We show that the Concatenation Crossover GP can efficiently optimize these test functions, while local search cannot be efficient for all three variants independent of employing bloat control.Comment: to appear in PPSN 201

    Computational complexity analysis of multi-objective genetic programming

    No full text
    The computational complexity analysis of genetic programming (GP) has been started recently in [7] by analyzing simple (1+1) GP algorithms for the problems ORDER and MAJORITY. In this paper, we study how taking the complexity as an additional criteria inuences the runtime behavior. We consider generalizations of ORDER and MAJORITY and present a computational complexity analysis of (1+1) GP using multi-criteria fitness functions that take into account the original objective and the complexity of a syntax tree as a secondary measure. Furthermore, we study the expected time until population-based multi-objective genetic programming algorithms have computed the Pareto front when taking the complexity of a syntax tree as an equally important objective.Frank Neuman
    corecore