3 research outputs found

    Recent Advances in Computational Methods for the Power Flow Equations

    Get PDF
    The power flow equations are at the core of most of the computations for designing and operating electric power systems. The power flow equations are a system of multivariate nonlinear equations which relate the power injections and voltages in a power system. A plethora of methods have been devised to solve these equations, starting from Newton-based methods to homotopy continuation and other optimization-based methods. While many of these methods often efficiently find a high-voltage, stable solution due to its large basin of attraction, most of the methods struggle to find low-voltage solutions which play significant role in certain stability-related computations. While we do not claim to have exhausted the existing literature on all related methods, this tutorial paper introduces some of the recent advances in methods for solving power flow equations to the wider power systems community as well as bringing attention from the computational mathematics and optimization communities to the power systems problems. After briefly reviewing some of the traditional computational methods used to solve the power flow equations, we focus on three emerging methods: the numerical polynomial homotopy continuation method, Groebner basis techniques, and moment/sum-of-squares relaxations using semidefinite programming. In passing, we also emphasize the importance of an upper bound on the number of solutions of the power flow equations and review the current status of research in this direction.Comment: 13 pages, 2 figures. Submitted to the Tutorial Session at IEEE 2016 American Control Conferenc

    Recent Advances in Randomized Methods for Big Data Optimization

    Get PDF
    In this thesis, we discuss and develop randomized algorithms for big data problems. In particular, we study the finite-sum optimization with newly emerged variance- reduction optimization methods (Chapter 2), explore the efficiency of second-order information applied to both convex and non-convex finite-sum objectives (Chapter 3) and employ the fast first-order method in power system problems (Chapter 4).In Chapter 2, we propose two variance-reduced gradient algorithms – mS2GD and SARAH. mS2GD incorporates a mini-batching scheme for improving the theoretical complexity and practical performance of SVRG/S2GD, aiming to minimize a strongly convex function represented as the sum of an average of a large number of smooth con- vex functions and a simple non-smooth convex regularizer. While SARAH, short for StochAstic Recursive grAdient algoritHm and using a stochastic recursive gradient, targets at minimizing the average of a large number of smooth functions for both con- vex and non-convex cases. Both methods fall into the category of variance-reduction optimization, and obtain a total complexity of O((n+κ)log(1/ε)) to achieve an ε-accuracy solution for strongly convex objectives, while SARAH also maintains a sub-linear convergence for non-convex problems. Meanwhile, SARAH has a practical variant SARAH+ due to its linear convergence of the expected stochastic gradients in inner loops.In Chapter 3, we declare that randomized batches can be applied with second- order information, as to improve upon convergence in both theory and practice, with a framework of L-BFGS as a novel approach to finite-sum optimization problems. We provide theoretical analyses for both convex and non-convex objectives. Meanwhile, we propose LBFGS-F as a variant where Fisher information matrix is used instead of Hessian information, and prove it applicable to a distributed environment within the popular applications of least-square and cross-entropy losses.In Chapter 4, we develop fast randomized algorithms for solving polynomial optimization problems on the applications of alternating-current optimal power flows (ACOPF) in power system field. The traditional research on power system problem focuses on solvers using second-order method, while no randomized algorithms have been developed. First, we propose a coordinate-descent algorithm as an online solver, applied for solving time-varying optimization problems in power systems. We bound the difference between the current approximate optimal cost generated by our algorithm and the optimal cost for a relaxation using the most recent data from above by a function of the properties of the instance and the rate of change to the instance over time. Second, we focus on a steady-state problem in power systems, and study means of switching from solving a convex relaxation to Newton method working on a non-convex (augmented) Lagrangian of the problem
    corecore