522,261 research outputs found
Recommended from our members
Computational Social Science
A field is emerging that leverages the capacity to collect and analyze data at a scale that may reveal patterns of individual and group behaviors.Governmen
Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges
Computational Social Choice is an interdisciplinary research area involving
Economics, Political Science, and Social Science on the one side, and
Mathematics and Computer Science (including Artificial Intelligence and
Multiagent Systems) on the other side. Typical computational problems studied
in this field include the vulnerability of voting procedures against attacks,
or preference aggregation in multi-agent systems. Parameterized Algorithmics is
a subfield of Theoretical Computer Science seeking to exploit meaningful
problem-specific parameters in order to identify tractable special cases of in
general computationally hard problems. In this paper, we propose nine of our
favorite research challenges concerning the parameterized complexity of
problems appearing in this context
Credimus
We believe that economic design and computational complexity---while already
important to each other---should become even more important to each other with
each passing year. But for that to happen, experts in on the one hand such
areas as social choice, economics, and political science and on the other hand
computational complexity will have to better understand each other's
worldviews.
This article, written by two complexity theorists who also work in
computational social choice theory, focuses on one direction of that process by
presenting a brief overview of how most computational complexity theorists view
the world. Although our immediate motivation is to make the lens through which
complexity theorists see the world be better understood by those in the social
sciences, we also feel that even within computer science it is very important
for nontheoreticians to understand how theoreticians think, just as it is
equally important within computer science for theoreticians to understand how
nontheoreticians think
AiiDA: Automated Interactive Infrastructure and Database for Computational Science
Computational science has seen in the last decades a spectacular rise in the
scope, breadth, and depth of its efforts. Notwithstanding this prevalence and
impact, it is often still performed using the renaissance model of individual
artisans gathered in a workshop, under the guidance of an established
practitioner. Great benefits could follow instead from adopting concepts and
tools coming from computer science to manage, preserve, and share these
computational efforts. We illustrate here our paradigm sustaining such vision,
based around the four pillars of Automation, Data, Environment, and Sharing. We
then discuss its implementation in the open-source AiiDA platform
(http://www.aiida.net), that has been tuned first to the demands of
computational materials science. AiiDA's design is based on directed acyclic
graphs to track the provenance of data and calculations, and ensure
preservation and searchability. Remote computational resources are managed
transparently, and automation is coupled with data storage to ensure
reproducibility. Last, complex sequences of calculations can be encoded into
scientific workflows. We believe that AiiDA's design and its sharing
capabilities will encourage the creation of social ecosystems to disseminate
codes, data, and scientific workflows.Comment: 30 pages, 7 figure
Computational Controversy
Climate change, vaccination, abortion, Trump: Many topics are surrounded by
fierce controversies. The nature of such heated debates and their elements have
been studied extensively in the social science literature. More recently,
various computational approaches to controversy analysis have appeared, using
new data sources such as Wikipedia, which help us now better understand these
phenomena. However, compared to what social sciences have discovered about such
debates, the existing computational approaches mostly focus on just a few of
the many important aspects around the concept of controversies. In order to
link the two strands, we provide and evaluate here a controversy model that is
both, rooted in the findings of the social science literature and at the same
time strongly linked to computational methods. We show how this model can lead
to computational controversy analytics that have full coverage over all the
crucial aspects that make up a controversy.Comment: In Proceedings of the 9th International Conference on Social
Informatics (SocInfo) 201
Computational Social Creativity
This article reviews the development of computational models of creativity where social interactions are central. We refer to this area as computational social creativity. Its context is described, including the broader study of creativity, the computational modeling of other social phenomena, and computational models of individual creativity. Computational modeling has been applied to a number of areas of social creativity and has the potential to contribute to our understanding of creativity. A number of requirements for computational models of social creativity are common in artificial life and computational social science simulations. Three key themes are identified: (1) computational social creativity research has a critical role to play in understanding creativity as a social phenomenon and advancing computational creativity by making clear epistemological contributions in ways that would be challenging for other approaches; (2) the methodologies developed in artificial life and computational social science carry over directly to computational social creativity; and (3) the combination of computational social creativity with individual models of creativity presents significant opportunities and poses interesting challenges for the development of integrated models of creativity that have yet to be realized
- …
