7 research outputs found

    Computational framework for applying electrical impedance tomography to head imaging

    Full text link
    This work introduces a computational framework for applying absolute electrical impedance tomography to head imaging without accurate information on the head shape or the electrode positions. A library of fifty heads is employed to build a principal component model for the typical variations in the shape of the human head, which leads to a relatively accurate parametrization for head shapes with only a few free parameters. The estimation of these shape parameters and the electrode positions is incorporated in a regularized Newton-type output least squares reconstruction algorithm. The presented numerical experiments demonstrate that strong enough variations in the internal conductivity of a human head can be detected by absolute electrical impedance tomography even if the geometric information on the measurement configuration is incomplete to an extent that is to be expected in practice.Comment: 25 pages, 12 figure

    Neural networks for classification of strokes in electrical impedance tomography on a 3D head model

    Full text link
    We consider the problem of the detection of brain hemorrhages from three dimensional (3D) electrical impedance tomography (EIT) measurements. This is a condition requiring urgent treatment for which EIT might provide a portable and quick diagnosis. We employ two neural network architectures -- a fully connected and a convolutional one -- for the classification of hemorrhagic and ischemic strokes. The networks are trained on a dataset with 40 00040\,000 samples of synthetic electrode measurements generated with the complete electrode model on realistic heads with a 3-layer structure. We consider changes in head anatomy and layers, electrode position, measurement noise and conductivity values. We then test the networks on several datasets of unseen EIT data, with more complex stroke modeling (different shapes and volumes), higher levels of noise and different amounts of electrode misplacement. On most test datasets we achieve ≥90%\geq 90\% average accuracy with fully connected neural networks, while the convolutional ones display an average accuracy ≥80%\geq 80\%. Despite the use of simple neural network architectures, the results obtained are very promising and motivate the applications of EIT-based classification methods on real phantoms and ultimately on human patients.Comment: 17 pages, 11 figure

    Computational framework for applying electrical impedance tomography to head imaging

    No full text
    This work introduces a computational framework for applying absolute electrical impedance tomography to head imaging without accurate information on the head shape or the electrode positions. A library of 50 heads is employed to build a principal component model for the typical variations in the shape of the human head, which leads to a relatively accurate parametrization for head shapes with only a few free parameters. The estimation of these shape parameters and the electrode positions is incorporated in a regularized Newton-type output least squares reconstruction algorithm. The presented numerical experiments demonstrate that strong enough variations in the internal conductivity of a human head can be detected by absolute electrical impedance tomography even if the geometric information on the measurement configuration is incomplete to an extent that is to be expected in practice

    Computational framework for applying electrical impedance tomography to head imaging

    No full text
    This work introduces a computational framework for applying absolute electrical impedance tomography to head imaging without accurate information on the head shape or the electrode positions. A library of 50 heads is employed to build a principal component model for the typical variations in the shape of the human head, which leads to a relatively accurate parametrization for head shapes with only a few free parameters. The estimation of these shape parameters and the electrode positions is incorporated in a regularized Newton-type output least squares reconstruction algorithm. The presented numerical experiments demonstrate that strong enough variations in the internal conductivity of a human head can be detected by absolute electrical impedance tomography even if the geometric information on the measurement configuration is incomplete to an extent that is to be expected in practice.Peer reviewe

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore