1,327,741 research outputs found
Computational simulation for concurrent engineering of aerospace propulsion systems
Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined
Research and Education in Computational Science and Engineering
Over the past two decades the field of computational science and engineering
(CSE) has penetrated both basic and applied research in academia, industry, and
laboratories to advance discovery, optimize systems, support decision-makers,
and educate the scientific and engineering workforce. Informed by centuries of
theory and experiment, CSE performs computational experiments to answer
questions that neither theory nor experiment alone is equipped to answer. CSE
provides scientists and engineers of all persuasions with algorithmic
inventions and software systems that transcend disciplines and scales. Carried
on a wave of digital technology, CSE brings the power of parallelism to bear on
troves of data. Mathematics-based advanced computing has become a prevalent
means of discovery and innovation in essentially all areas of science,
engineering, technology, and society; and the CSE community is at the core of
this transformation. However, a combination of disruptive
developments---including the architectural complexity of extreme-scale
computing, the data revolution that engulfs the planet, and the specialization
required to follow the applications to new frontiers---is redefining the scope
and reach of the CSE endeavor. This report describes the rapid expansion of CSE
and the challenges to sustaining its bold advances. The report also presents
strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie
Quantum Mechanics with Trajectories: Quantum Trajectories and Adaptive Grids
Although the foundations of the hydrodynamical formulation of quantum
mechanics were laid over 50 years ago, it has only been within the past few
years that viable computational implementations have been developed. One
approach to solving the hydrodynamic equations uses quantum trajectories as the
computational tool. The trajectory equations of motion are described and
methods for implementation are discussed, including fitting of the fields to
gaussian clusters.Comment: Prepared for CiSE, Computing in Science and Engineering IEEE/AIP
special issue on computational chemistr
Practical quality control tools for curves and surfaces
Curves (geometry) and surfaces created by Computer Aided Geometric Design systems in the engineering environment must satisfy two basic quality criteria: the geometric shape must have the desired engineering properties; and the objects must be parameterized in a way which does not cause computational difficulty for geometric processing and engineering analysis. Interactive techniques are described which are in use at Boeing to evaluate the quality of aircraft geometry prior to Computational Fluid Dynamic analysis, including newly developed methods for examining surface parameterization and its effects
Computer program for the design of toroidal transformers
Program relieves designer of most of the computational details, while he maintains control over most engineering decisions. Number of specifications that must be supplied by user allows for considerable flexibility and for exercise of engineering judgment. Speed of program makes it possible to run many cases, economically determining effect of various parameter changes
Artificial Immune Systems - Models, algorithms and applications
Copyright © 2010 Academic Research Publishing Agency.This article has been made available through the Brunel Open Access Publishing Fund.Artificial Immune Systems (AIS) are computational paradigms that belong to the computational intelligence family and are inspired by the biological immune system. During the past decade, they have attracted a lot of interest from researchers aiming to develop immune-based models and techniques to solve complex computational or engineering problems. This work presents a survey of existing AIS models and algorithms with a focus on the last five years.This article is available through the Brunel Open Access Publishing Fun
- …
