6,813 research outputs found

    Joint Image Reconstruction and Segmentation Using the Potts Model

    Full text link
    We propose a new algorithmic approach to the non-smooth and non-convex Potts problem (also called piecewise-constant Mumford-Shah problem) for inverse imaging problems. We derive a suitable splitting into specific subproblems that can all be solved efficiently. Our method does not require a priori knowledge on the gray levels nor on the number of segments of the reconstruction. Further, it avoids anisotropic artifacts such as geometric staircasing. We demonstrate the suitability of our method for joint image reconstruction and segmentation. We focus on Radon data, where we in particular consider limited data situations. For instance, our method is able to recover all segments of the Shepp-Logan phantom from 77 angular views only. We illustrate the practical applicability on a real PET dataset. As further applications, we consider spherical Radon data as well as blurred data

    An L1 Penalty Method for General Obstacle Problems

    Get PDF
    We construct an efficient numerical scheme for solving obstacle problems in divergence form. The numerical method is based on a reformulation of the obstacle in terms of an L1-like penalty on the variational problem. The reformulation is an exact regularizer in the sense that for large (but finite) penalty parameter, we recover the exact solution. Our formulation is applied to classical elliptic obstacle problems as well as some related free boundary problems, for example the two-phase membrane problem and the Hele-Shaw model. One advantage of the proposed method is that the free boundary inherent in the obstacle problem arises naturally in our energy minimization without any need for problem specific or complicated discretization. In addition, our scheme also works for nonlinear variational inequalities arising from convex minimization problems.Comment: 20 pages, 18 figure

    On the Rate of Convergence for the Pseudospectral Optimal Control of Feedback Linearizable Systems

    Get PDF
    In this paper, we prove a theorem on the rate of convergence for the optimal cost computed using PS methods. It is a first proved convergence rate in the literature of PS optimal control. In addition to the high-order convergence rate, two theorems are proved for the existence and convergence of the approximate solutions. This paper contains several essential differences from existing papers on PS optimal control as well as some other direct computational methods. The proofs do not use necessary conditions of optimal control. Furthermore, we do not make coercivity type of assumptions. As a result, the theory does not require the local uniqueness of optimal solutions. In addition, a restrictive assumption on the cluster points of discrete solutions made in existing convergence theorems are removed.Comment: 28 pages, 3 figures, 1 tabl
    • …
    corecore