2,595 research outputs found

    Computational Depth and Reducibility

    Get PDF
    This paper investigates Bennett\u27s notions of strong and weak computational depth (also called logical depth) for infinite binary sequences. Roughly, an infinite binary sequence x is defined to be weakly useful if every element of a non-negligible set of decidable sequences is reducible to x in recursively bounded time. It is shown that every weakly useful sequence is strongly deep. This result (which generalizes Bennett\u27s observation that the halting problem is strongly deep) implies that every high Turing degree contains strongly deep sequences. It is also shown that, in the sense of Baire category, almost every infinite binary sequence is weakly deep, but not strongly deep

    The Complexity of Local Proof Search in Linear Logic (Extended Abstract)

    Get PDF
    AbstractProof search in linear logic is known to be difficult: the provability of propositional linear logic formulas is undecidable. Even without the modalities, multiplicative-additive fragment of propositional linear logic, mall, is known to be PSPACE-complete, and the pure multiplicative fragment, mll, is known to be np-complete. However, this still leaves open the possibility that there might be proof search heuristics (perhaps involving randomization) that often lead to a proof if there is one, or always lead to something close to a proof. One approach to these problems is to study strategies for proof games. A class of linear logic proof games is developed, each with a numeric score that depends on the number of certain preferred axioms used in a complete or partial proof tree. Using recent techniques for proving lower bounds on optimization problems, the complexity of these games is analyzed for the fragment mll extended with additive constants and for the fragment MALL. It is shown that no efficient heuristics exist unless there is an unexpected collapse in the complexity hierarchy
    • …
    corecore