4 research outputs found

    Design requirements for generating deceptive content to protect document repositories

    Get PDF
    For nearly 30 years, fake digital documents have been used to identify external intruders and malicious insider threats. Unfortunately, while fake files hold potential to assist in data theft detection, there is little evidence of their application outside of niche organisations and academic institutions. The barrier to wider adoption appears to be the difficulty in constructing deceptive content. The current generation of solutions principally: (1) use unrealistic random data; (2) output heavily formatted or specialised content, that is difficult to apply to other environments; (3) require users to manually build the content, which is not scalable, or (4) employ an existing production file, which creates a protection paradox. This paper introduces a set of requirements for generating automated fake file content: (1) enticing, (2) realistic, (3) minimise disruption, (4) adaptive, (5) scalable protective coverage, (6) minimise sensitive artefacts and copyright infringement, and (7) contain no distinguishable characteristics. These requirements have been drawn from literature on natural science, magical performances, human deceit, military operations, intrusion detection and previous fake file solutions. These requirements guide the design of an automated fake file content construction system, providing an opportunity for the next generation of solutions to find greater commercial application and widespread adoption

    DECEPTION BASED TECHNIQUES AGAINST RANSOMWARES: A SYSTEMATIC REVIEW

    Get PDF
    Ransomware is the most prevalent emerging business risk nowadays. It seriously affects business continuity and operations. According to Deloitte Cyber Security Landscape 2022, up to 4000 ransomware attacks occur daily, while the average number of days an organization takes to identify a breach is 191. Sophisticated cyber-attacks such as ransomware typically must go through multiple consecutive phases (initial foothold, network propagation, and action on objectives) before accomplishing its final objective. This study analyzed decoy-based solutions as an approach (detection, prevention, or mitigation) to overcome ransomware. A systematic literature review was conducted, in which the result has shown that deception-based techniques have given effective and significant performance against ransomware with minimal resources. It is also identified that contrary to general belief, deception techniques mainly involved in passive approaches (i.e., prevention, detection) possess other active capabilities such as ransomware traceback and obstruction (thwarting), file decryption, and decryption key recovery. Based on the literature review, several evaluation methods are also analyzed to measure the effectiveness of these deception-based techniques during the implementation process
    corecore