178,226 research outputs found

    Efficient Computation of the Characteristic Polynomial

    Full text link
    This article deals with the computation of the characteristic polynomial of dense matrices over small finite fields and over the integers. We first present two algorithms for the finite fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization of Keller-Gehrig's third algorithm could improve both complexity and computational time. We use these results as a basis for the computation of the characteristic polynomial of integer matrices. We first use early termination and Chinese remaindering for dense matrices. Then a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is particularly well suited to sparse and/or structured matrices

    On the Hardness of the Lee Syndrome Decoding Problem

    Full text link
    In this paper we study the hardness of the syndrome decoding problem over finite rings endowed with the Lee metric. We first prove that the decisional version of the problem is NP-complete, by a reduction from the 3-dimensional matching problem. Then, we study the actual complexity of solving the problem, by translating the best known solvers in the Hamming metric over finite fields to the Lee metric over finite rings, as well as proposing some novel solutions. For the analyzed algorithms, we assess the computational complexity in both the finite and asymptotic regimes.Comment: Part of this work appeared as preliminary results in arXiv:2001.0842

    Universal and Robust Distributed Network Codes

    Full text link
    Random linear network codes can be designed and implemented in a distributed manner, with low computational complexity. However, these codes are classically implemented over finite fields whose size depends on some global network parameters (size of the network, the number of sinks) that may not be known prior to code design. Also, if new nodes join the entire network code may have to be redesigned. In this work, we present the first universal and robust distributed linear network coding schemes. Our schemes are universal since they are independent of all network parameters. They are robust since if nodes join or leave, the remaining nodes do not need to change their coding operations and the receivers can still decode. They are distributed since nodes need only have topological information about the part of the network upstream of them, which can be naturally streamed as part of the communication protocol. We present both probabilistic and deterministic schemes that are all asymptotically rate-optimal in the coding block-length, and have guarantees of correctness. Our probabilistic designs are computationally efficient, with order-optimal complexity. Our deterministic designs guarantee zero error decoding, albeit via codes with high computational complexity in general. Our coding schemes are based on network codes over ``scalable fields". Instead of choosing coding coefficients from one field at every node, each node uses linear coding operations over an ``effective field-size" that depends on the node's distance from the source node. The analysis of our schemes requires technical tools that may be of independent interest. In particular, we generalize the Schwartz-Zippel lemma by proving a non-uniform version, wherein variables are chosen from sets of possibly different sizes. We also provide a novel robust distributed algorithm to assign unique IDs to network nodes.Comment: 12 pages, 7 figures, 1 table, under submission to INFOCOM 201

    Distributed matrix multiplication with straggler tolerance using algebraic function fields

    Full text link
    The problem of straggler mitigation in distributed matrix multiplication (DMM) is considered for a large number of worker nodes and a fixed small finite field. Polynomial codes and matdot codes are generalized by making use of algebraic function fields (i.e., algebraic functions over an algebraic curve) over a finite field. The construction of optimal solutions is translated to a combinatorial problem on the Weierstrass semigroups of the corresponding algebraic curves. Optimal or almost optimal solutions are provided. These have the same computational complexity per worker as classical polynomial and matdot codes, and their recovery thresholds are almost optimal in the asymptotic regime (growing number of workers and a fixed finite field)
    • …
    corecore