179,815 research outputs found

    Computational Complexity and Numerical Stability of Linear Problems

    Full text link
    We survey classical and recent developments in numerical linear algebra, focusing on two issues: computational complexity, or arithmetic costs, and numerical stability, or performance under roundoff error. We present a brief account of the algebraic complexity theory as well as the general error analysis for matrix multiplication and related problems. We emphasize the central role played by the matrix multiplication problem and discuss historical and modern approaches to its solution.Comment: 16 pages; updated to reflect referees' remarks; to appear in Proceedings of the 5th European Congress of Mathematic

    Computational Complexity and Numerical Stability of Linear Problems

    Full text link
    We survey classical and recent developments in numerical linear algebra, focusing on two issues: computational complexity, or arithmetic costs, and numerical stability, or performance under roundoff error. We present a brief account of the algebraic complexity theory as well as the general error analysis for matrix multiplication and related problems. We emphasize the central role played by the matrix multiplication problem and discuss historical and modern approaches to its solution.Comment: 16 pages; updated to reflect referees' remarks; to appear in Proceedings of the 5th European Congress of Mathematic

    An Improved Constraint-Tightening Approach for Stochastic MPC

    Full text link
    The problem of achieving a good trade-off in Stochastic Model Predictive Control between the competing goals of improving the average performance and reducing conservativeness, while still guaranteeing recursive feasibility and low computational complexity, is addressed. We propose a novel, less restrictive scheme which is based on considering stability and recursive feasibility separately. Through an explicit first step constraint we guarantee recursive feasibility. In particular we guarantee the existence of a feasible input trajectory at each time instant, but we only require that the input sequence computed at time kk remains feasible at time k+1k+1 for most disturbances but not necessarily for all, which suffices for stability. To overcome the computational complexity of probabilistic constraints, we propose an offline constraint-tightening procedure, which can be efficiently solved via a sampling approach to the desired accuracy. The online computational complexity of the resulting Model Predictive Control (MPC) algorithm is similar to that of a nominal MPC with terminal region. A numerical example, which provides a comparison with classical, recursively feasible Stochastic MPC and Robust MPC, shows the efficacy of the proposed approach.Comment: Paper has been submitted to ACC 201

    High-Order, Stable, And Efficient Pseudospectral Method Using Barycentric Gegenbauer Quadratures

    Full text link
    The work reported in this article presents a high-order, stable, and efficient Gegenbauer pseudospectral method to solve numerically a wide variety of mathematical models. The proposed numerical scheme exploits the stability and the well-conditioning of the numerical integration operators to produce well-conditioned systems of algebraic equations, which can be solved easily using standard algebraic system solvers. The core of the work lies in the derivation of novel and stable Gegenbauer quadratures based on the stable barycentric representation of Lagrange interpolating polynomials and the explicit barycentric weights for the Gegenbauer-Gauss (GG) points. A rigorous error and convergence analysis of the proposed quadratures is presented along with a detailed set of pseudocodes for the established computational algorithms. The proposed numerical scheme leads to a reduction in the computational cost and time complexity required for computing the numerical quadrature while sharing the same exponential order of accuracy achieved by Elgindy and Smith-Miles (2013). The bulk of the work includes three numerical test examples to assess the efficiency and accuracy of the numerical scheme. The present method provides a strong addition to the arsenal of numerical pseudospectral methods, and can be extended to solve a wide range of problems arising in numerous applications.Comment: 30 pages, 10 figures, 1 tabl

    Tensor Network alternating linear scheme for MIMO Volterra system identification

    Full text link
    This article introduces two Tensor Network-based iterative algorithms for the identification of high-order discrete-time nonlinear multiple-input multiple-output (MIMO) Volterra systems. The system identification problem is rewritten in terms of a Volterra tensor, which is never explicitly constructed, thus avoiding the curse of dimensionality. It is shown how each iteration of the two identification algorithms involves solving a linear system of low computational complexity. The proposed algorithms are guaranteed to monotonically converge and numerical stability is ensured through the use of orthogonal matrix factorizations. The performance and accuracy of the two identification algorithms are illustrated by numerical experiments, where accurate degree-10 MIMO Volterra models are identified in about 1 second in Matlab on a standard desktop pc
    corecore