50,198 research outputs found

    Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework

    Get PDF
    While many existing formal concept analysis algorithms are efficient, they are typically unsuitable for distributed implementation. Taking the MapReduce (MR) framework as our inspiration we introduce a distributed approach for performing formal concept mining. Our method has its novelty in that we use a light-weight MapReduce runtime called Twister which is better suited to iterative algorithms than recent distributed approaches. First, we describe the theoretical foundations underpinning our distributed formal concept analysis approach. Second, we provide a representative exemplar of how a classic centralized algorithm can be implemented in a distributed fashion using our methodology: we modify Ganter's classic algorithm by introducing a family of MR* algorithms, namely MRGanter and MRGanter+ where the prefix denotes the algorithm's lineage. To evaluate the factors that impact distributed algorithm performance, we compare our MR* algorithms with the state-of-the-art. Experiments conducted on real datasets demonstrate that MRGanter+ is efficient, scalable and an appealing algorithm for distributed problems.Comment: 17 pages, ICFCA 201, Formal Concept Analysis 201

    Gabor Filter and Rough Clustering Based Edge Detection

    Full text link
    This paper introduces an efficient edge detection method based on Gabor filter and rough clustering. The input image is smoothed by Gabor function, and the concept of rough clustering is used to focus on edge detection with soft computational approach. Hysteresis thresholding is used to get the actual output, i.e. edges of the input image. To show the effectiveness, the proposed technique is compared with some other edge detection methods.Comment: Proc. IEEE Conf. #30853, International Conference on Human Computer Interactions (ICHCI'13), Chennai, India, 23-24 Aug., 201
    corecore