741 research outputs found

    A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton

    Full text link
    We describe a simple n-dimensional quantum cellular automaton (QCA) capable of simulating all others, in that the initial configuration and the forward evolution of any n-dimensional QCA can be encoded within the initial configuration of the intrinsically universal QCA. Several steps of the intrinsically universal QCA then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA.Comment: 13 pages, 7 figures. In Proceedings of the 4th International Conference on Language and Automata Theory and Applications (LATA 2010), Lecture Notes in Computer Science (LNCS). Journal version: arXiv:0907.382

    A Quantum Game of Life

    Get PDF
    This research describes a three dimensional quantum cellular automaton (QCA) which can simulate all other 3D QCA. This intrinsically universal QCA belongs to the simplest subclass of QCA: Partitioned QCA (PQCA). PQCA are QCA of a particular form, where incoming information is scattered by a fixed unitary U before being redistributed and rescattered. Our construction is minimal amongst PQCA, having block size 2 x 2 x 2 and cell dimension 2. Signals, wires and gates emerge in an elegant fashion.Comment: 13 pages, 10 figures. Final version, accepted by Journ\'ees Automates Cellulaires (JAC 2010)

    A Survey of Cellular Automata: Types, Dynamics, Non-uniformity and Applications

    Full text link
    Cellular automata (CAs) are dynamical systems which exhibit complex global behavior from simple local interaction and computation. Since the inception of cellular automaton (CA) by von Neumann in 1950s, it has attracted the attention of several researchers over various backgrounds and fields for modelling different physical, natural as well as real-life phenomena. Classically, CAs are uniform. However, non-uniformity has also been introduced in update pattern, lattice structure, neighborhood dependency and local rule. In this survey, we tour to the various types of CAs introduced till date, the different characterization tools, the global behaviors of CAs, like universality, reversibility, dynamics etc. Special attention is given to non-uniformity in CAs and especially to non-uniform elementary CAs, which have been very useful in solving several real-life problems.Comment: 43 pages; Under review in Natural Computin

    Quantum Cellular Automata

    Full text link
    Quantum cellular automata (QCA) are reviewed, including early and more recent proposals. QCA are a generalization of (classical) cellular automata (CA) and in particular of reversible CA. The latter are reviewed shortly. An overview is given over early attempts by various authors to define one-dimensional QCA. These turned out to have serious shortcomings which are discussed as well. Various proposals subsequently put forward by a number of authors for a general definition of one- and higher-dimensional QCA are reviewed and their properties such as universality and reversibility are discussed.Comment: 12 pages, 3 figures. To appear in the Springer Encyclopedia of Complexity and Systems Scienc

    Trace Complexity of Chaotic Reversible Cellular Automata

    Full text link
    Delvenne, K\r{u}rka and Blondel have defined new notions of computational complexity for arbitrary symbolic systems, and shown examples of effective systems that are computationally universal in this sense. The notion is defined in terms of the trace function of the system, and aims to capture its dynamics. We present a Devaney-chaotic reversible cellular automaton that is universal in their sense, answering a question that they explicitly left open. We also discuss some implications and limitations of the construction.Comment: 12 pages + 1 page appendix, 4 figures. Accepted to Reversible Computation 2014 (proceedings published by Springer

    Intrinsically universal one-dimensional quantum cellular automata in two flavours

    Full text link
    We give a one-dimensional quantum cellular automaton (QCA) capable of simulating all others. By this we mean that the initial configuration and the local transition rule of any one-dimensional QCA can be encoded within the initial configuration of the universal QCA. Several steps of the universal QCA will then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA. The encoding is linear and hence does not carry any of the cost of the computation. We do this in two flavours: a weak one which requires an infinite but periodic initial configuration and a strong one which needs only a finite initial configuration. KEYWORDS: Quantum cellular automata, Intrinsic universality, Quantum computation.Comment: 27 pages, revtex, 23 figures. V3: The results of V1-V2 are better explained and formalized, and a novel result about intrinsic universality with only finite initial configurations is give
    corecore