1,871 research outputs found

    Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing

    Full text link
    Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases.Comment: The paper has been accepted by IEEE/ACM Transactions on Networking, Sept. 2015. arXiv admin note: substantial text overlap with arXiv:1404.320

    Joint Optimization of Radio Resources and Code Partitioning in Mobile Edge Computing

    Full text link
    The aim of this paper is to propose a computation offloading strategy for mobile edge computing. We exploit the concept of call graph, which models a generic computer program as a set of procedures related to each other through a weighted directed graph. Our goal is to derive the optimal partition of the call graph establishing which procedures are to be executed locally or remotely. The main novelty of our work is that the optimal partition is obtained jointly with the selection of radio parameters, e.g., transmit power and constellation size, in order to minimize the energy consumption at the mobile handset, under a latency constraint taking into account transmit time and execution time. We consider both single and multi-channel transmission strategies and we prove that a globally optimal solution can be achieved in both cases. Finally, we propose a suboptimal strategy aimed at solving a relaxed version of the original problem in order to tradeoff complexity and performance of the proposed framework. Finally, several numerical results illustrate under what conditions in terms of call graph topology, communication strategy, and computation parameters, the proposed offloading strategy provides large performance gains.Comment: Submitted to IEEE Transactions on Signal Processin

    Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing

    Full text link
    With the breakthroughs in deep learning, the recent years have witnessed a booming of artificial intelligence (AI) applications and services, spanning from personal assistant to recommendation systems to video/audio surveillance. More recently, with the proliferation of mobile computing and Internet-of-Things (IoT), billions of mobile and IoT devices are connected to the Internet, generating zillions Bytes of data at the network edge. Driving by this trend, there is an urgent need to push the AI frontiers to the network edge so as to fully unleash the potential of the edge big data. To meet this demand, edge computing, an emerging paradigm that pushes computing tasks and services from the network core to the network edge, has been widely recognized as a promising solution. The resulted new inter-discipline, edge AI or edge intelligence, is beginning to receive a tremendous amount of interest. However, research on edge intelligence is still in its infancy stage, and a dedicated venue for exchanging the recent advances of edge intelligence is highly desired by both the computer system and artificial intelligence communities. To this end, we conduct a comprehensive survey of the recent research efforts on edge intelligence. Specifically, we first review the background and motivation for artificial intelligence running at the network edge. We then provide an overview of the overarching architectures, frameworks and emerging key technologies for deep learning model towards training/inference at the network edge. Finally, we discuss future research opportunities on edge intelligence. We believe that this survey will elicit escalating attentions, stimulate fruitful discussions and inspire further research ideas on edge intelligence.Comment: Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing," Proceedings of the IEE

    Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence

    Full text link
    Along with the rapid developments in communication technologies and the surge in the use of mobile devices, a brand-new computation paradigm, Edge Computing, is surging in popularity. Meanwhile, Artificial Intelligence (AI) applications are thriving with the breakthroughs in deep learning and the many improvements in hardware architectures. Billions of data bytes, generated at the network edge, put massive demands on data processing and structural optimization. Thus, there exists a strong demand to integrate Edge Computing and AI, which gives birth to Edge Intelligence. In this paper, we divide Edge Intelligence into AI for edge (Intelligence-enabled Edge Computing) and AI on edge (Artificial Intelligence on Edge). The former focuses on providing more optimal solutions to key problems in Edge Computing with the help of popular and effective AI technologies while the latter studies how to carry out the entire process of building AI models, i.e., model training and inference, on the edge. This paper provides insights into this new inter-disciplinary field from a broader perspective. It discusses the core concepts and the research road-map, which should provide the necessary background for potential future research initiatives in Edge Intelligence.Comment: 13 pages, 3 figure

    Resource Sharing of a Computing Access Point for Multi-user Mobile Cloud Offloading with Delay Constraints

    Full text link
    We consider a mobile cloud computing system with multiple users, a remote cloud server, and a computing access point (CAP). The CAP serves both as the network access gateway and a computation service provider to the mobile users. It can either process the received tasks from mobile users or offload them to the cloud. We jointly optimize the offloading decisions of all users, together with the allocation of computation and communication resources, to minimize the overall cost of energy consumption, computation, and maximum delay among users. The joint optimization problem is formulated as a mixed-integer program. We show that the problem can be reformulated and transformed into a non-convex quadratically constrained quadratic program, which is NP-hard in general. We then propose an efficient solution to this problem by semidefinite relaxation and a novel randomization mapping method. Furthermore, when there is a strict delay constraint for processing each user's task, we further propose a three-step algorithm to guarantee the feasibility and local optimality of the obtained solution. Our simulation results show that the proposed solutions give nearly optimal performance under a wide range of parameter settings, and the addition of a CAP can significantly reduce the cost of multi-user task offloading compared with conventional mobile cloud computing where only the remote cloud server is available.Comment: in IEEE Transactions on Mobile Computing, 201

    All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

    Full text link
    With the Internet of Things (IoT) becoming part of our daily life and our environment, we expect rapid growth in the number of connected devices. IoT is expected to connect billions of devices and humans to bring promising advantages for us. With this growth, fog computing, along with its related edge computing paradigms, such as multi-access edge computing (MEC) and cloudlet, are seen as promising solutions for handling the large volume of security-critical and time-sensitive data that is being produced by the IoT. In this paper, we first provide a tutorial on fog computing and its related computing paradigms, including their similarities and differences. Next, we provide a taxonomy of research topics in fog computing, and through a comprehensive survey, we summarize and categorize the efforts on fog computing and its related computing paradigms. Finally, we provide challenges and future directions for research in fog computing.Comment: 48 pages, 7 tables, 11 figures, 450 references. The data (categories and features/objectives of the papers) of this survey are now available publicly. Accepted by Elsevier Journal of Systems Architectur

    Bi-Directional Mission Offloading for Agile Space-Air-Ground Integrated Networks

    Full text link
    Space-air-ground integrated networks (SAGIN) provide great strengths in extending the capability of ground wireless networks. On the other hand, with rich spectrum and computing resources, the ground networks can also assist space-air networks to accomplish resource-intensive or power-hungry missions, enhancing the capability and sustainability of the space-air networks. Therefore, bi-directional mission offloading can make full use of the advantages of SAGIN and benefits both space-air and ground networks. In this article, we identify the key role of network reconfiguration in coordinating heterogeneous resources in SAGIN, and study how network function virtualization (NFV) and service function chaining (SFC) enable agile mission offloading. A case study validates the performance gain brought by bi-directional mission offloading. Future research issues are outlooked as the bi-directional mission offloading framework opens a new trail in releasing the full potentials of SAGIN.Comment: accepted by IEEE Wireless Communications Magazin

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper

    Application Management in Fog Computing Environments: A Taxonomy, Review and Future Directions

    Full text link
    The Internet of Things (IoT) paradigm is being rapidly adopted for the creation of smart environments in various domains. The IoT-enabled Cyber-Physical Systems (CPSs) associated with smart city, healthcare, Industry 4.0 and Agtech handle a huge volume of data and require data processing services from different types of applications in real-time. The Cloud-centric execution of IoT applications barely meets such requirements as the Cloud datacentres reside at a multi-hop distance from the IoT devices. \textit{Fog computing}, an extension of Cloud at the edge network, can execute these applications closer to data sources. Thus, Fog computing can improve application service delivery time and resist network congestion. However, the Fog nodes are highly distributed, heterogeneous and most of them are constrained in resources and spatial sharing. Therefore, efficient management of applications is necessary to fully exploit the capabilities of Fog nodes. In this work, we investigate the existing application management strategies in Fog computing and review them in terms of architecture, placement and maintenance. Additionally, we propose a comprehensive taxonomy and highlight the research gaps in Fog-based application management. We also discuss a perspective model and provide future research directions for further improvement of application management in Fog computing

    Mobile Edge Cloud: Opportunities and Challenges

    Full text link
    Mobile edge cloud is emerging as a promising technology to the internet of things and cyber-physical system applications such as smart home and intelligent video surveillance. In a smart home, various sensors are deployed to monitor the home environment and physiological health of individuals. The data collected by sensors are sent to an application, where numerous algorithms for emotion and sentiment detection, activity recognition and situation management are applied to provide healthcare- and emergency-related services and to manage resources at the home. The executions of these algorithms require a vast amount of computing and storage resources. To address the issue, the conventional approach is to send the collected data to an application on an internet cloud. This approach has several problems such as high communication latency, communication energy consumption and unnecessary data traffic to the core network. To overcome the drawbacks of the conventional cloud-based approach, a new system called mobile edge cloud is proposed. In mobile edge cloud, multiple mobiles and stationary devices interconnected through wireless local area networks are combined to create a small cloud infrastructure at a local physical area such as a home. Compared to traditional mobile distributed computing systems, mobile edge cloud introduces several complex challenges due to the heterogeneous computing environment, heterogeneous and dynamic network environment, node mobility, and limited battery power. The real-time requirements associated with the internet of things and cyber-physical system applications make the problem even more challenging. In this paper, we describe the applications and challenges associated with the design and development of mobile edge cloud system and propose an architecture based on a cross layer design approach for effective decision making.Comment: 4th Annual Conference on Computational Science and Computational Intelligence, December 14-16, 2017, Las Vegas, Nevada, USA. arXiv admin note: text overlap with arXiv:1810.0704
    corecore