14,491 research outputs found

    Flow structure and optical beam propagation in high-Reynolds-number gas-phase shear layers and jets

    Get PDF
    We report on the structure of the scalar index-of-refraction field generated by turbulent, gas-phase, incompressible and compressible shear layers and incompressible jets, and on associated beam-propagation aero-optical phenomena. Using simultaneous imaging of the optical-beam distortion and the turbulent-flow index-of-refraction field, wavefront-phase functions were computed for optical beams emerging from the turbulent region in these free-shear flows, in an aero-optical regime producing weak wavefront distortions. Spatial wavefront-phase behaviour is found to be dominated by the large-scale structure of these flows. A simple level-set representation of the index-of-refraction field in high-Reynolds-number, incompressible shear layers is found to provide a good representation of observed wavefront-phase behaviour, indicating that the structure of the unsteady outer boundaries of the turbulent region provides the dominant contributions

    Analysis of turbulence and vortex structures by flow mapping

    Get PDF
    The technique of Particle Image Velocimetry (PIV) flow mapping is reviewed and comparisons made with Laser Doppler Anemometry (LDA). Results are presented showing the application of PlV to the determination of coherent structures in grid-generated turbulence and theoretical expressions are presented for the errors associated with the computation of statistical parameters. Measurements are also presented showing the vortex structure in the wake of a model wind turbine. These studies have revealed fundamental inadequacies in existing computer codes used by the wind turbine industry

    Applying the Hilbert--Huang Decomposition to Horizontal Light Propagation C_n^2 data

    Get PDF
    The Hilbert Huang Transform is a new technique for the analysis of non--stationary signals. It comprises two distinct parts: Empirical Mode Decomposition (EMD) and the Hilbert Transform of each of the modes found from the first step to produce a Hilbert Spectrum. The EMD is an adaptive decomposition of the data, which results in the extraction of Intrinsic Mode Functions (IMFs). We discuss the application of the EMD to the calibration of two optical scintillometers that have been used to measure C_n^2 over horizontal paths on a building rooftop, and discuss the advantage of using the Marginal Hilbert Spectrum over the traditional Fourier Power Spectrum.Comment: 9 pages, 11 figures, proc. SPIE 626

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu
    • 

    corecore