3,777 research outputs found

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

    Full text link
    With the Internet of Things (IoT) becoming part of our daily life and our environment, we expect rapid growth in the number of connected devices. IoT is expected to connect billions of devices and humans to bring promising advantages for us. With this growth, fog computing, along with its related edge computing paradigms, such as multi-access edge computing (MEC) and cloudlet, are seen as promising solutions for handling the large volume of security-critical and time-sensitive data that is being produced by the IoT. In this paper, we first provide a tutorial on fog computing and its related computing paradigms, including their similarities and differences. Next, we provide a taxonomy of research topics in fog computing, and through a comprehensive survey, we summarize and categorize the efforts on fog computing and its related computing paradigms. Finally, we provide challenges and future directions for research in fog computing.Comment: 48 pages, 7 tables, 11 figures, 450 references. The data (categories and features/objectives of the papers) of this survey are now available publicly. Accepted by Elsevier Journal of Systems Architectur

    Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence

    Full text link
    Along with the rapid developments in communication technologies and the surge in the use of mobile devices, a brand-new computation paradigm, Edge Computing, is surging in popularity. Meanwhile, Artificial Intelligence (AI) applications are thriving with the breakthroughs in deep learning and the many improvements in hardware architectures. Billions of data bytes, generated at the network edge, put massive demands on data processing and structural optimization. Thus, there exists a strong demand to integrate Edge Computing and AI, which gives birth to Edge Intelligence. In this paper, we divide Edge Intelligence into AI for edge (Intelligence-enabled Edge Computing) and AI on edge (Artificial Intelligence on Edge). The former focuses on providing more optimal solutions to key problems in Edge Computing with the help of popular and effective AI technologies while the latter studies how to carry out the entire process of building AI models, i.e., model training and inference, on the edge. This paper provides insights into this new inter-disciplinary field from a broader perspective. It discusses the core concepts and the research road-map, which should provide the necessary background for potential future research initiatives in Edge Intelligence.Comment: 13 pages, 3 figure

    A Computation Offloading Incentive Mechanism with Delay and Cost Constraints under 5G Satellite-ground IoV architecture

    Full text link
    The 5G Internet of Vehicles has become a new paradigm alongside the growing popularity and variety of computation-intensive applications with high requirements for computational resources and analysis capabilities. Existing network architectures and resource management mechanisms may not sufficiently guarantee satisfactory Quality of Experience and network efficiency, mainly suffering from coverage limitation of Road Side Units, insufficient resources, and unsatisfactory computational capabilities of onboard equipment, frequently changing network topology, and ineffective resource management schemes. To meet the demands of such applications, in this article, we first propose a novel architecture by integrating the satellite network with 5G cloud-enabled Internet of Vehicles to efficiently support seamless coverage and global resource management. A incentive mechanism based joint optimization problem of opportunistic computation offloading under delay and cost constraints is established under the aforementioned framework, in which a vehicular user can either significantly reduce the application completion time by offloading workloads to several nearby vehicles through opportunistic vehicle-to-vehicle channels while effectively controlling the cost or protect its own profit by providing compensated computing service. As the optimization problem is non-convex and NP-hard, simulated annealing based on the Markov Chain Monte Carlo as well as the metropolis algorithm is applied to solve the optimization problem, which can efficaciously obtain both high-quality and cost-effective approximations of global optimal solutions. The effectiveness of the proposed mechanism is corroborated through simulation results

    Exploiting Massive D2D Collaboration for Energy-Efficient Mobile Edge Computing

    Full text link
    In this article we propose a novel Device-to-Device (D2D) Crowd framework for 5G mobile edge computing, where a massive crowd of devices at the network edge leverage the network-assisted D2D collaboration for computation and communication resource sharing among each other. A key objective of this framework is to achieve energy-efficient collaborative task executions at network-edge for mobile users. Specifically, we first introduce the D2D Crowd system model in details, and then formulate the energy-efficient D2D Crowd task assignment problem by taking into account the necessary constraints. We next propose a graph matching based optimal task assignment policy, and further evaluate its performance through extensive numerical study, which shows a superior performance of more than 50% energy consumption reduction over the case of local task executions. Finally, we also discuss the directions of extending the D2D Crowd framework by taking into variety of application factors.Comment: Xu Chen, Lingjun Pu, Lin Gao, Weigang Wu, and Di Wu, "Exploiting Massive D2D Collaboration for Energy-Efficient Mobile Edge Computing," accepted by IEEE Wireless Communications, 201

    Decentralized Computation Offloading for Multi-User Mobile Edge Computing: A Deep Reinforcement Learning Approach

    Full text link
    Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. Nevertheless, by considering a MEC system consisting of multiple mobile users with stochastic task arrivals and wireless channels in this paper, the design of computation offloading policies is challenging to minimize the long-term average computation cost in terms of power consumption and buffering delay. A deep reinforcement learning (DRL) based decentralized dynamic computation offloading strategy is investigated to build a scalable MEC system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn efficient computation offloading policies independently at each mobile user. Thus, powers of both local execution and task offloading can be adaptively allocated by the learned policies from each user's local observation of the MEC system. Numerical results are illustrated to demonstrate that efficient policies can be learned at each user, and performance of the proposed DDPG based decentralized strategy outperforms the conventional deep Q-network (DQN) based discrete power control strategy and some other greedy strategies with reduced computation cost. Besides, the power-delay tradeoff is also analyzed for both the DDPG based and DQN based strategies

    Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks

    Full text link
    Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobile users in executing computation-intensive tasks via task offloading. The problem of Joint Task Offloading and Resource Allocation (JTORA) is studied in order to maximize the users' task offloading gains, which is measured by the reduction in task completion time and energy consumption. The considered problem is formulated as a Mixed Integer Non-linear Program (MINLP) that involves jointly optimizing the task offloading decision, uplink transmission power of mobile users, and computing resource allocation at the MEC servers. Due to the NP-hardness of this problem, solving for optimal solution is difficult and impractical for a large-scale network. To overcome this drawback, our approach is to decompose the original problem into (i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem. We address the RA problem using convex and quasi-convex optimization techniques, and propose a novel heuristic algorithm to the TO problem that achieves a suboptimal solution in polynomial time. Numerical simulation results show that our algorithm performs closely to the optimal solution and that it significantly improves the users' offloading utility over traditional approaches

    An Incentive-Aware Job Offloading Control Framework for Mobile Edge Computing

    Full text link
    This paper considers a scenario in which an access point (AP) is equipped with a mobile edge server of finite computing power, and serves multiple resource-hungry mobile users by charging users a price. Pricing provides users with incentives in offloading. However, existing works on pricing are based on abstract concave utility functions (e.g, the logarithm function), giving no dependence on physical layer parameters. To that end, we first introduce a novel utility function, which measures the cost reduction by offloading as compared with executing jobs locally. Based on this utility function we then formulate two offloading games, with one maximizing individual's interest and the other maximizing the overall system's interest. We analyze the structural property of the games and admit in closed form the Nash Equilibrium and the Social Equilibrium, respectively. The proposed expressions are functions of the user parameters such as the weights of computational time and energy, the distance from the AP, thus constituting an advancement over prior economic works that have considered only abstract functions. Finally, we propose an optimal pricing-based scheme, with which we prove that the interactive decision-making process with self-interested users converges to a Nash Equilibrium point equal to the Social Equilibrium point.Comment: 13 pages, 9 figure

    Hierarchical Fog-Cloud Computing for IoT Systems: A Computation Offloading Game

    Full text link
    Fog computing, which provides low-latency computing services at the network edge, is an enabler for the emerging Internet of Things (IoT) systems. In this paper, we study the allocation of fog computing resources to the IoT users in a hierarchical computing paradigm including fog and remote cloud computing services. We formulate a computation offloading game to model the competition between IoT users and allocate the limited processing power of fog nodes efficiently. Each user aims to maximize its own quality of experience (QoE), which reflects its satisfaction of using computing services in terms of the reduction in computation energy and delay. Utilizing a potential game approach, we prove the existence of a pure Nash equilibrium and provide an upper bound for the price of anarchy. Since the time complexity to reach the equilibrium increases exponentially in the number of users, we further propose a near-optimal resource allocation mechanism and prove that in a system with NN IoT users, it can achieve an ϵ\epsilon-Nash equilibrium in O(N/ϵ)O(N/\epsilon) time. Through numerical studies, we evaluate the users' QoE as well as the equilibrium efficiency. Our results reveal that by utilizing the proposed mechanism, more users benefit from computing services in comparison to an existing offloading mechanism. We further show that our proposed mechanism significantly reduces the computation delay and enables low-latency fog computing services for delay-sensitive IoT applications

    Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges and Opportunities

    Full text link
    The ever-increasing mobile data demands have posed significant challenges in the current radio access networks, while the emerging computation-heavy Internet of things (IoT) applications with varied requirements demand more flexibility and resilience from the cloud/edge computing architecture. In this article, to address the issues, we propose a novel air-ground integrated mobile edge network (AGMEN), where UAVs are flexibly deployed and scheduled, and assist the communication, caching, and computing of the edge network. In specific, we present the detailed architecture of AGMEN, and investigate the benefits and application scenarios of drone-cells, and UAV-assisted edge caching and computing. Furthermore, the challenging issues in AGMEN are discussed, and potential research directions are highlighted.Comment: Accepted by IEEE Communications Magazine. 5 figure
    corecore