3,718 research outputs found

    On Verifiable Sufficient Conditions for Sparse Signal Recovery via â„“1\ell_1 Minimization

    Full text link
    We propose novel necessary and sufficient conditions for a sensing matrix to be "ss-good" - to allow for exact â„“1\ell_1-recovery of sparse signals with ss nonzero entries when no measurement noise is present. Then we express the error bounds for imperfect â„“1\ell_1-recovery (nonzero measurement noise, nearly ss-sparse signal, near-optimal solution of the optimization problem yielding the â„“1\ell_1-recovery) in terms of the characteristics underlying these conditions. Further, we demonstrate (and this is the principal result of the paper) that these characteristics, although difficult to evaluate, lead to verifiable sufficient conditions for exact sparse â„“1\ell_1-recovery and to efficiently computable upper bounds on those ss for which a given sensing matrix is ss-good. We establish also instructive links between our approach and the basic concepts of the Compressed Sensing theory, like Restricted Isometry or Restricted Eigenvalue properties

    On a class of optimization-based robust estimators

    Full text link
    We consider in this paper the problem of estimating a parameter matrix from observations which are affected by two types of noise components: (i) a sparse noise sequence which, whenever nonzero can have arbitrarily large amplitude (ii) and a dense and bounded noise sequence of "moderate" amount. This is termed a robust regression problem. To tackle it, a quite general optimization-based framework is proposed and analyzed. When only the sparse noise is present, a sufficient bound is derived on the number of nonzero elements in the sparse noise sequence that can be accommodated by the estimator while still returning the true parameter matrix. While almost all the restricted isometry-based bounds from the literature are not verifiable, our bound can be easily computed through solving a convex optimization problem. Moreover, empirical evidence tends to suggest that it is generally tight. If in addition to the sparse noise sequence, the training data are affected by a bounded dense noise, we derive an upper bound on the estimation error.Comment: To appear in IEEE Transactions on Automatic Contro
    • …
    corecore