1,749 research outputs found

    Constructive Dimension and Turing Degrees

    Full text link
    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) / dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previously-known zero-one law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) = dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems, 45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to insufficient care with the choice of delta. This version modifies that proof to fix the error

    Bounded time computation on metric spaces and Banach spaces

    Full text link
    We extend the framework by Kawamura and Cook for investigating computational complexity for operators occurring in analysis. This model is based on second-order complexity theory for functions on the Baire space, which is lifted to metric spaces by means of representations. Time is measured in terms of the length of the input encodings and the required output precision. We propose the notions of a complete representation and of a regular representation. We show that complete representations ensure that any computable function has a time bound. Regular representations generalize Kawamura and Cook's more restrictive notion of a second-order representation, while still guaranteeing fast computability of the length of the encodings. Applying these notions, we investigate the relationship between purely metric properties of a metric space and the existence of a representation such that the metric is computable within bounded time. We show that a bound on the running time of the metric can be straightforwardly translated into size bounds of compact subsets of the metric space. Conversely, for compact spaces and for Banach spaces we construct a family of admissible, complete, regular representations that allow for fast computation of the metric and provide short encodings. Here it is necessary to trade the time bound off against the length of encodings

    Parameterized Uniform Complexity in Numerics: from Smooth to Analytic, from NP-hard to Polytime

    Full text link
    The synthesis of classical Computational Complexity Theory with Recursive Analysis provides a quantitative foundation to reliable numerics. Here the operators of maximization, integration, and solving ordinary differential equations are known to map (even high-order differentiable) polynomial-time computable functions to instances which are `hard' for classical complexity classes NP, #P, and CH; but, restricted to analytic functions, map polynomial-time computable ones to polynomial-time computable ones -- non-uniformly! We investigate the uniform parameterized complexity of the above operators in the setting of Weihrauch's TTE and its second-order extension due to Kawamura&Cook (2010). That is, we explore which (both continuous and discrete, first and second order) information and parameters on some given f is sufficient to obtain similar data on Max(f) and int(f); and within what running time, in terms of these parameters and the guaranteed output precision 2^(-n). It turns out that Gevrey's hierarchy of functions climbing from analytic to smooth corresponds to the computational complexity of maximization growing from polytime to NP-hard. Proof techniques involve mainly the Theory of (discrete) Computation, Hard Analysis, and Information-Based Complexity

    Kolmogorov Complexity in perspective. Part II: Classification, Information Processing and Duality

    Get PDF
    We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts published in a same volume. Part II is dedicated to the relation between logic and information system, within the scope of Kolmogorov algorithmic information theory. We present a recent application of Kolmogorov complexity: classification using compression, an idea with provocative implementation by authors such as Bennett, Vitanyi and Cilibrasi. This stresses how Kolmogorov complexity, besides being a foundation to randomness, is also related to classification. Another approach to classification is also considered: the so-called "Google classification". It uses another original and attractive idea which is connected to the classification using compression and to Kolmogorov complexity from a conceptual point of view. We present and unify these different approaches to classification in terms of Bottom-Up versus Top-Down operational modes, of which we point the fundamental principles and the underlying duality. We look at the way these two dual modes are used in different approaches to information system, particularly the relational model for database introduced by Codd in the 70's. This allows to point out diverse forms of a fundamental duality. These operational modes are also reinterpreted in the context of the comprehension schema of axiomatic set theory ZF. This leads us to develop how Kolmogorov's complexity is linked to intensionality, abstraction, classification and information system.Comment: 43 page

    Dimension Extractors and Optimal Decompression

    Full text link
    A *dimension extractor* is an algorithm designed to increase the effective dimension -- i.e., the amount of computational randomness -- of an infinite binary sequence, in order to turn a "partially random" sequence into a "more random" sequence. Extractors are exhibited for various effective dimensions, including constructive, computable, space-bounded, time-bounded, and finite-state dimension. Using similar techniques, the Kucera-Gacs theorem is examined from the perspective of decompression, by showing that every infinite sequence S is Turing reducible to a Martin-Loef random sequence R such that the asymptotic number of bits of R needed to compute n bits of S, divided by n, is precisely the constructive dimension of S, which is shown to be the optimal ratio of query bits to computed bits achievable with Turing reductions. The extractors and decompressors that are developed lead directly to new characterizations of some effective dimensions in terms of optimal decompression by Turing reductions.Comment: This report was combined with a different conference paper "Every Sequence is Decompressible from a Random One" (cs.IT/0511074, at http://dx.doi.org/10.1007/11780342_17), and both titles were changed, with the conference paper incorporated as section 5 of this new combined paper. The combined paper was accepted to the journal Theory of Computing Systems, as part of a special issue of invited papers from the second conference on Computability in Europe, 200
    corecore