522 research outputs found

    Efficient Data Gathering in Wireless Sensor Networks Based on Matrix Completion and Compressive Sensing

    Full text link
    Gathering data in an energy efficient manner in wireless sensor networks is an important design challenge. In wireless sensor networks, the readings of sensors always exhibit intra-temporal and inter-spatial correlations. Therefore, in this letter, we use low rank matrix completion theory to explore the inter-spatial correlation and use compressive sensing theory to take advantage of intra-temporal correlation. Our method, dubbed MCCS, can significantly reduce the amount of data that each sensor must send through network and to the sink, thus prolong the lifetime of the whole networks. Experiments using real datasets demonstrate the feasibility and efficacy of our MCCS method

    Compressed Sensing based Low-Power Multi-View Video Coding and Transmission in Wireless Multi-Path Multi-Hop Networks

    Get PDF
    Wireless Multimedia Sensor Network (WMSN) is increasingly being deployed for surveillance, monitoring and Internet-of-Things (IoT) sensing applications where a set of cameras capture and compress local images and then transmit the data to a remote controller. Such captured local images may also be compressed in a multi-view fashion to reduce the redundancy among overlapping views. In this paper, we present a novel paradigm for compressed-sensing-enabled multi-view coding and streaming in WMSN. We first propose a new encoding and decoding architecture for multi-view video systems based on Compressed Sensing (CS) principles, composed of cooperative sparsity-aware block-level rate-adaptive encoders, feedback channels and independent decoders. The proposed architecture leverages the properties of CS to overcome many limitations of traditional encoding techniques, specifically massive storage requirements and high computational complexity. Then, we present a modeling framework that exploits the aforementioned coding architecture. The proposed mathematical problem minimizes the power consumption by jointly determining the encoding rate and multi-path rate allocation subject to distortion and energy constraints. Extensive performance evaluation results show that the proposed framework is able to transmit multi-view streams with guaranteed video quality at lower power consumption

    Compressed Sensing in Resource-Constrained Environments: From Sensing Mechanism Design to Recovery Algorithms

    Get PDF
    Compressed Sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. It is promising that CS can be utilized in environments where the signal acquisition process is extremely difficult or costly, e.g., a resource-constrained environment like the smartphone platform, or a band-limited environment like visual sensor network (VSNs). There are several challenges to perform sensing due to the characteristic of these platforms, including, for example, needing active user involvement, computational and storage limitations and lower transmission capabilities. This dissertation focuses on the study of CS in resource-constrained environments. First, we try to solve the problem on how to design sensing mechanisms that could better adapt to the resource-limited smartphone platform. We propose the compressed phone sensing (CPS) framework where two challenging issues are studied, the energy drainage issue due to continuous sensing which may impede the normal functionality of the smartphones and the requirement of active user inputs for data collection that may place a high burden on the user. Second, we propose a CS reconstruction algorithm to be used in VSNs for recovery of frames/images. An efficient algorithm, NonLocal Douglas-Rachford (NLDR), is developed. NLDR takes advantage of self-similarity in images using nonlocal means (NL) filtering. We further formulate the nonlocal estimation as the low-rank matrix approximation problem and solve the constrained optimization problem using Douglas-Rachford splitting method. Third, we extend the NLDR algorithm to surveillance video processing in VSNs and propose recursive Low-rank and Sparse estimation through Douglas-Rachford splitting (rLSDR) method for recovery of the video frame into a low-rank background component and sparse component that corresponds to the moving object. The spatial and temporal low-rank features of the video frame, e.g., the nonlocal similar patches within the single video frame and the low-rank background component residing in multiple frames, are successfully exploited

    On the energy self-sustainability of IoT via distributed compressed sensing

    Get PDF
    This paper advocates the use of the distributed compressed sensing (DCS) paradigm to deploy energy harvesting (EH) Internet of Thing (IoT) devices for energy self-sustainability. We consider networks with signal/energy models that capture the fact that both the collected signals and the harvested energy of different devices can exhibit correlation. We provide theoretical analysis on the performance of both the classical compressive sensing (CS) approach and the proposed distributed CS (DCS)-based approach to data acquisition for EH IoT. Moreover, we perform an in-depth comparison of the proposed DCS-based approach against the distributed source coding (DSC) system. These performance characterizations and comparisons embody the effect of various system phenomena and parameters including signal correlation, EH correlation, network size, and energy availability level. Our results unveil that, the proposed approach offers significant increase in data gathering capability with respect to the CS-based approach, and offers a substantial reduction of the mean-squared error distortion with respect to the DSC system

    Compressed Sensing and Parallel Acquisition

    Full text link
    Parallel acquisition systems arise in various applications in order to moderate problems caused by insufficient measurements in single-sensor systems. These systems allow simultaneous data acquisition in multiple sensors, thus alleviating such problems by providing more overall measurements. In this work we consider the combination of compressed sensing with parallel acquisition. We establish the theoretical improvements of such systems by providing recovery guarantees for which, subject to appropriate conditions, the number of measurements required per sensor decreases linearly with the total number of sensors. Throughout, we consider two different sampling scenarios -- distinct (corresponding to independent sampling in each sensor) and identical (corresponding to dependent sampling between sensors) -- and a general mathematical framework that allows for a wide range of sensing matrices (e.g., subgaussian random matrices, subsampled isometries, random convolutions and random Toeplitz matrices). We also consider not just the standard sparse signal model, but also the so-called sparse in levels signal model. This model includes both sparse and distributed signals and clustered sparse signals. As our results show, optimal recovery guarantees for both distinct and identical sampling are possible under much broader conditions on the so-called sensor profile matrices (which characterize environmental conditions between a source and the sensors) for the sparse in levels model than for the sparse model. To verify our recovery guarantees we provide numerical results showing phase transitions for a number of different multi-sensor environments.Comment: 43 pages, 4 figure
    • …
    corecore