1,015 research outputs found

    Compressive Sensing based Asynchronous Random Access for Wireless Networks

    Get PDF
    Abstract-The theory of compressive sensing has shown that with a small number of samples from random projections of a sparse signal, one can recover the original signal under certain conditions. In this paper, we use compressive sensing to design a random access protocol for requesting uplink data channels. A wireless node transmits a pseudo-random sequence to an access point (AP) when it requires an uplink channel. The AP receives multiple sequences in a random access shared channel. Due to different propagation delays, the received signals from different wireless nodes are not synchronized at the receiver. Assume that the number of sequence transmissions is substantially less than the number of wireless nodes in the system. Under such circumstances, we design an asynchronous compressive sensing based decoder to recover the original signals in a random access setting. The key difference between our proposed decoder and those presented in the literature is that we do not require any synchronization before sequence transmission which makes our approach practical. Simulation results show the throughput improvement of our proposed scheme compared to two other random access protocols

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Multiple Access for Small Packets Based on Precoding and Sparsity-Aware Detection

    Get PDF
    Modern mobile terminals often produce a large number of small data packets. For these packets, it is inefficient to follow the conventional medium access control protocols because of poor utilization of service resources. We propose a novel multiple access scheme that employs block-spreading based precoding at the transmitters and sparsity-aware detection schemes at the base station. The proposed scheme is well suited for the emerging massive multiple-input multiple-output (MIMO) systems, as well as conventional cellular systems with a small number of base-station antennas. The transmitters employ precoding in time domain to enable the simultaneous transmissions of many users, which could be even more than the number of receive antennas at the base station. The system is modeled as a linear system of equations with block-sparse unknowns. We first adopt the block orthogonal matching pursuit (BOMP) algorithm to recover the transmitted signals. We then develop an improved algorithm, named interference cancellation BOMP (ICBOMP), which takes advantage of error correction and detection coding to perform perfect interference cancellation during each iteration of BOMP algorithm. Conditions for guaranteed data recovery are identified. The simulation results demonstrate that the proposed scheme can accommodate more simultaneous transmissions than conventional schemes in typical small-packet transmission scenarios.Comment: submitted to IEEE Transactions on Wireless Communication

    A Novel Uplink Data Transmission Scheme For Small Packets In Massive MIMO System

    Full text link
    Intelligent terminals often produce a large number of data packets of small lengths. For these packets, it is inefficient to follow the conventional medium access control (MAC) protocols because they lead to poor utilization of service resources. We propose a novel multiple access scheme that targets massive multiple-input multiple-output (MIMO) systems based on compressive sensing (CS). We employ block precoding in the time domain to enable the simultaneous transmissions of many users, which could be even more than the number of receive antennas at the base station. We develop a block-sparse system model and adopt the block orthogonal matching pursuit (BOMP) algorithm to recover the transmitted signals. Conditions for data recovery guarantees are identified and numerical results demonstrate that our scheme is efficient for uplink small packet transmission.Comment: IEEE/CIC ICCC 2014 Symposium on Signal Processing for Communication

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed
    corecore