1,536 research outputs found

    Masking Strategies for Image Manifolds

    Full text link
    We consider the problem of selecting an optimal mask for an image manifold, i.e., choosing a subset of the pixels of the image that preserves the manifold's geometric structure present in the original data. Such masking implements a form of compressive sensing through emerging imaging sensor platforms for which the power expense grows with the number of pixels acquired. Our goal is for the manifold learned from masked images to resemble its full image counterpart as closely as possible. More precisely, we show that one can indeed accurately learn an image manifold without having to consider a large majority of the image pixels. In doing so, we consider two masking methods that preserve the local and global geometric structure of the manifold, respectively. In each case, the process of finding the optimal masking pattern can be cast as a binary integer program, which is computationally expensive but can be approximated by a fast greedy algorithm. Numerical experiments show that the relevant manifold structure is preserved through the data-dependent masking process, even for modest mask sizes

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Time for dithering: fast and quantized random embeddings via the restricted isometry property

    Full text link
    Recently, many works have focused on the characterization of non-linear dimensionality reduction methods obtained by quantizing linear embeddings, e.g., to reach fast processing time, efficient data compression procedures, novel geometry-preserving embeddings or to estimate the information/bits stored in this reduced data representation. In this work, we prove that many linear maps known to respect the restricted isometry property (RIP) can induce a quantized random embedding with controllable multiplicative and additive distortions with respect to the pairwise distances of the data points beings considered. In other words, linear matrices having fast matrix-vector multiplication algorithms (e.g., based on partial Fourier ensembles or on the adjacency matrix of unbalanced expanders) can be readily used in the definition of fast quantized embeddings with small distortions. This implication is made possible by applying right after the linear map an additive and random "dither" that stabilizes the impact of the uniform scalar quantization operator applied afterwards. For different categories of RIP matrices, i.e., for different linear embeddings of a metric space (KRn,q)(\mathcal K \subset \mathbb R^n, \ell_q) in (Rm,p)(\mathbb R^m, \ell_p) with p,q1p,q \geq 1, we derive upper bounds on the additive distortion induced by quantization, showing that it decays either when the embedding dimension mm increases or when the distance of a pair of embedded vectors in K\mathcal K decreases. Finally, we develop a novel "bi-dithered" quantization scheme, which allows for a reduced distortion that decreases when the embedding dimension grows and independently of the considered pair of vectors.Comment: Keywords: random projections, non-linear embeddings, quantization, dither, restricted isometry property, dimensionality reduction, compressive sensing, low-complexity signal models, fast and structured sensing matrices, quantized rank-one projections (31 pages
    corecore