308,682 research outputs found

    Solidification of APC residues using PFA

    No full text
    A pulverised fuel ash (pfa) classed as a waste due to high loss on ignition (LoI) was blended with waste alkali and used to solidify air pollution control (APC) residue from a waste incinerator. The resultant samples were tested for compressive strength and characterised using thermogravimmetric analysis (TGA). The effects of various variables including; l/s ratio, APC content, curing temperature and alkalinity of the liquid phase were examined. Results showed that a lower l/s gave higher compressive strength, analogous to that seen for cement mixes. Curing at slightly elevated temperatures were necessary for setting of the mixes within 7 days. An alkaline liquid fraction increased early age strength. The %(w/w) APC content showed no clear correlation with compressive strength results, but some APC was necessary for the mix to set. Resulys suggest the optimum APC content for compressive strength and solidification may be between 10-20%

    Compressive Strength of Volcanic Ash/Ordinary Portland Cement Laterized Concrete

    Get PDF
    This study investigates the effect of partial replacement of cement with volcanic ash (VA) on the compressive strength of laterized concrete. A total of 192 cubes of 150mm dimensions were cast and cured in water for 7, 14, 21, and 28 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively, while a control mix of 28-day target strength of 25 N/mm2 was adopted. The results show that the density and compressive strength of concrete decreased with increase in volcanic ash content. The 28-day, density dropped from 2390 kg/m3 to 2285 kg/m3 (i.e. 4.4% loss) and the compressive strength from 25.08 N/mm2 to 17.98 N/mm2 (i.e. 28% loss) for 0-30% variation of VA content with no laterite introduced. The compressive strength also decreased with increase in laterite content; the strength of the laterized concrete however increases as the curing age progresses

    Influence of Curing Age and Mix Composition on Compressive Strength of Volcanic Ash Blended Cement Laterized Concrete

    Get PDF
    This study investigates the influence of curing age and mix proportions on the compressive strength of volcanic ash (VA) blended cement laterized concrete. A total of 288 cubes of 100mm dimensions were cast and cured in water for 3, 7, 28, 56, 90 and 120 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively while a control mix of 28-day target strength of 25N/mm2 (using British Method) was adopted. The results show that the compressive strength of the VA-blended cement laterized concrete increased with the increase in curing age but decreased as the VA and laterite (LAT) contents increased. The optimum replacement level was 20%LAT/20%VA. At this level the compressive strength increased with curing age at a decreasing rate beyond 28 days. The target compressive strength of 25N/mm2 was achieved for this mixture at 90 days of curing. VA content and curing age was noted to have significant effect (α 0.5) on the compressive strength of the VA-blended cement laterized concrete

    Workability, compressive strength and initial surface absorption of laterized concrete

    Get PDF
    This paper investigated the workability, compressive strength and initial surface absorption of plasticised laterized concrete at the water/cement ratios of 0.30, 0.50 and 0.70. Slump, compressive strength at 7, 14, 21 and 28 days and initial surface absorption after 10 minutes (ISA-10) at 28, 60 and 90 days were determined at the laterite contents of 0, 20, 40, 60, 80 and 100%. ISA-10 was also assessed at 28-day strengths of 20, 25 and 30 N/mm2. Results showed that superplasticiser dosage increased with increasing content of laterite and for economic dosage laterite content should be limited to 40%. At equal water/cement ratios, compressive strength reduced with increasing content of laterite and ISA-10 increased with increasing content of laterite. The results also showed a strong relationship between ISA-10 and compressive strength and that laterized concrete, when specified on the basis of strength, would have resistance to initial surface absorption comparable with that of the conventional concrete if laterite content is limited to 40%. Hence, for good workability, compressive strength and permeation resistance, laterite content of concrete should be limited to 40%

    The effect of impact damage and circular holes on the compressive strength of a graphite-epoxy laminate

    Get PDF
    Specimens were impacted by 1.27-cm-diameter aluminum spheres with speeds ranging from 52 to 101 m/s. Some specimens were impacted without any applied compressive load and then loaded to failure to determine their residual strength. Other specimens were loaded to a prescribed axial compressive strain and impacted while at that applied load. Loaded specimens that did not fail catastrophically on impact were subsequently loaded to failure to determine their residual strength. Low-velocity impact damage was found to degrade seriously the laminate static compressive strength. Low-strain compression-compression cyclic loading was found to degrade further the compressive strength of impact-damaged specimens. Specimens with circular holes having diameters up to a third of the specimen width were loaded to failure in compression. It was found that circular holes can also degrade the static compressive strength of the laminate. The effects of circular holes and impact damage on the compressive strength of the laminate are compared

    Strength and water absorption rate of concrete made from palm oil fuel ash

    Get PDF
    Concrete is one of the most important materials for construction industry. The material in the mixture of concrete includes cement, sand and coarse aggregate. Production of cement causes the air pollution from the emission of carbon dioxide to the air. This research studies the replacement of cement with palm oil fuel ash (POFA) in the concrete mixture. The objective of this research is to investigate the compressive strength of concrete and water absorption rate of concrete made from POFA and to compare the strength and absorption rate between conventional concrete and concrete made from POFA. This is to indicate whether the compressive strength and absorption rate are equivalent to the strength of conventional concrete. The methodology used in this research is experimental method and the palm oil fuel ash was taken from palm oil mill in Cha’ah, Johor, Malaysia. The results of this research are the specimens which contain 20% POFA has a compressive strength and water absorption rate comparable to conventional concrete

    Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading

    Get PDF
    This study investigates the failure mechanisms of unidirectional (UD) HTS40/977-2 toughened resin composites subjected to longitudinal compressive loading. A possible sequence of failure initiation and propagation was proposed based on SEM and optical microscopy observations of failed specimens. The micrographs revealed that the misaligned fibres failed in two points upon reaching maximum micro-bending deformation and two planes of fracture were created to form a kink band. Therefore, fibre microbuckling and fibre kinking models were implemented to predict the compressive strength of LID HTS40/977-2 composite laminate. The analysis identified several parameters that were responsible for the microbuckling and kinking failure mechanisms. The effects of these parameters on the compressive strength of the LID HTS40/977-2 composite systems were discussed. The predicted compressive strength using a newly developed combined modes model showed a very good agreement to the measured value (c) 2009 Elsevier Ltd. All rights reserve
    corecore