149 research outputs found

    Compressive sensing adaptation for polynomial chaos expansions

    Full text link
    Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.Comment: Submitted to Journal of Computational Physic

    Hierarchical adaptive polynomial chaos expansions

    Full text link
    Polynomial chaos expansions (PCE) are widely used in the framework of uncertainty quantification. However, when dealing with high dimensional complex problems, challenging issues need to be faced. For instance, high-order polynomials may be required, which leads to a large polynomial basis whereas usually only a few of the basis functions are in fact significant. Taking into account the sparse structure of the model, advanced techniques such as sparse PCE (SPCE), have been recently proposed to alleviate the computational issue. In this paper, we propose a novel approach to SPCE, which allows one to exploit the model's hierarchical structure. The proposed approach is based on the adaptive enrichment of the polynomial basis using the so-called principle of heredity. As a result, one can reduce the computational burden related to a large pre-defined candidate set while obtaining higher accuracy with the same computational budget
    • …
    corecore